亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DBAII-Net with multiscale feature aggregation and cross-modal attention for enhancing infant brain injury classification in MRI

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 机器学习 数据挖掘
作者
Zhen Jia,Tingting Huang,Xianjun Li,Yitong Bian,Li Wang,Jian‐Min Yuan,Guanghua Xu,Jian Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (20): 205017-205017
标识
DOI:10.1088/1361-6560/ad80f7
摘要

Abstract Objectives. Magnetic resonance imaging (MRI) is pivotal in diagnosing brain injuries in infants. However, the dynamic development of the brain introduces variability in infant MRI characteristics, posing challenges for MRI-based classification in this population. Furthermore, manual data selection in large-scale studies is labor-intensive, and existing algorithms often underperform with thick-slice MRI data. To enhance research efficiency and classification accuracy in large datasets, we propose an advanced classification model. Approach. We introduce the Dual-Branch Attention Information Interactive Neural Network (DBAII-Net), a cutting-edge model inspired by radiologists’ use of multiple MRI sequences. DBAII-Net features two innovative modules: (1) the convolutional enhancement module (CEM), which leverages advanced convolutional techniques to aggregate multi-scale features, significantly enhancing information representation; and (2) the cross-modal attention module (CMAM), which employs state-of-the-art attention mechanisms to fuse data across branches, dramatically improving positional and channel feature extraction. Performances (accuracy, sensitivity, specificity, area under the curve (AUC), etc) of DBAII-Net were compared with eight benchmark models for brain MRI classification in infants aged 6 months to 2 years. Main results. Utilizing a self-constructed dataset of 240 thick-slice brain MRI scans (122 with brain injuries, 118 without), DBAII-Net demonstrated superior performance. On a test set of approximately 50 cases, DBAII-Net achieved average performance metrics of 92.53% accuracy, 90.20% sensitivity, 94.93% specificity, and an AUC of 0.9603. Ablation studies confirmed the effectiveness of CEM and CMAM, with CMAM significantly boosting classification metrics. Significance. DBAII-Net with CEM and CMAM outperforms existing benchmarks in enhancing the precision of brain MRI classification in infants, significantly reducing manual effort in infant brain research. Our code is available at https://github.com/jiazhen4585/DBAII-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
未济终焉发布了新的文献求助10
11秒前
20秒前
MRJJJJ完成签到,获得积分10
23秒前
平淡的中心完成签到,获得积分10
51秒前
乐乐应助科研通管家采纳,获得10
1分钟前
轻松小张应助herococa采纳,获得150
1分钟前
mathmotive完成签到,获得积分10
1分钟前
林狗完成签到 ,获得积分10
2分钟前
2分钟前
天空之城发布了新的文献求助30
2分钟前
Orange应助大胆绮采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
herococa完成签到,获得积分10
3分钟前
3分钟前
5分钟前
大胆绮发布了新的文献求助10
5分钟前
糖伯虎完成签到 ,获得积分10
5分钟前
小刘哥加油完成签到 ,获得积分10
5分钟前
缓慢的语琴完成签到 ,获得积分10
6分钟前
田様应助大力采纳,获得30
6分钟前
6分钟前
wjywjy发布了新的文献求助10
6分钟前
打打应助呵呵心情采纳,获得10
6分钟前
6分钟前
呵呵心情发布了新的文献求助10
6分钟前
呵呵心情完成签到,获得积分20
6分钟前
Dannnn发布了新的文献求助10
7分钟前
倾听昆语完成签到 ,获得积分10
7分钟前
Kkk完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
大胆绮完成签到,获得积分10
7分钟前
神外王001完成签到 ,获得积分10
7分钟前
LRxxx完成签到 ,获得积分10
7分钟前
风趣的靖雁完成签到 ,获得积分10
8分钟前
9分钟前
科研通AI5应助科研通管家采纳,获得10
9分钟前
科研通AI5应助lll采纳,获得10
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229