The Role of Spatial Morphology in Forest Landscape Fragmentation: Insights From Planted and Natural Forests of the Chinese Loess Plateau

黄土高原 碎片(计算) 自然(考古学) 天然林 黄土 农林复合经营 地理 形态学(生物学) 生态学 林业 环境科学 地质学 土壤科学 生物 地貌学 考古 古生物学
作者
Mei Zhang,Shichuan Yu,Zhong Zhao
出处
期刊:Land Degradation & Development [Wiley]
卷期号:35 (17): 5100-5114 被引量:4
标识
DOI:10.1002/ldr.5282
摘要

ABSTRACT This study aimed to emphasize the key role of spatial morphology of planted and natural forests on landscape fragmentation and to furnish a scientific foundation for the effective assessment of ecological restoration projects of vegetation on the Loess Plateau. The spatial morphological pattern and landscape fragmentation characteristics were analyzed using morphological spatial pattern analysis (MSPA) and forest area density methods. This is the inaugural study to reveal the linear and nonlinear relationships between forest landscape fragmentation and its driving factors using machine learning methods and introducing morphological indicators with two different strategies. The results showed significant differences in the spatial patterns and landscape fragmentation characteristics between planted and natural forests. The spatial patterns of planted and natural forests were found to be dominated by “Core” in terms of area, while “Branch” was more prevalent in terms of number. Compared to natural forests, planted forests were more fragmented. The introduction of the MSPA indicator significantly enhanced the explanatory power and predictive performance of the model despite the disparate contribution rates of the driving factors in planted and natural forests. This study highlights the importance of spatial morphology in understanding forest landscape fragmentation and provides a new combination of analytical techniques to better understand the complexity of forest ecosystems. These provide new insights into forest landscape restoration and sustainable management on the Loess Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ze发布了新的文献求助10
刚刚
XCY发布了新的文献求助10
刚刚
刚刚
Akim应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得30
刚刚
CodeCraft应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
刚刚
刚刚
小郭子应助科研通管家采纳,获得20
刚刚
zhonglv7应助科研通管家采纳,获得10
刚刚
刚刚
小郭子应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
刚刚
无花果应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
Owen应助cookie采纳,获得10
刚刚
刚刚
无花果应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
快乐滑板应助北长尾山雀采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得200
1秒前
111完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082