Addressing limitations of the K-means clustering algorithm: outliers, non-spherical data, and optimal cluster selection

聚类分析 离群值 选择(遗传算法) 星团(航天器) 计算机科学 数据挖掘 确定数据集中的群集数 单连锁聚类 算法 k均值聚类 CURE数据聚类算法 模式识别(心理学) 人工智能 模糊聚类 程序设计语言
作者
Iliyas Karim Khan,Hanita Daud,Nooraini Binti Zainuddin,Rajalingam Sokkalingam,Abdussamad,Abdul Museeb,Agha Inayat
出处
期刊:AIMS mathematics [American Institute of Mathematical Sciences]
卷期号:9 (9): 25070-25097 被引量:19
标识
DOI:10.3934/math.20241222
摘要

<p>Clustering is essential in data analysis, with K-means clustering being widely used for its simplicity and efficiency. However, several challenges can affect its performance, including the handling of outliers, the transformation of non-spherical data into a spherical form, and the selection of the optimal number of clusters. This paper addressed these challenges by developing and enhancing specific models. The primary objective was to improve the robustness and accuracy of K-means clustering in the presence of these issues. To handle outliers, this research employed the winsorization method, which uses threshold values to minimize the influence of extreme data points. For the transformation of non-spherical data into a spherical form, the KROMD method was introduced, which combines Manhattan distance with a Gaussian kernel. This approach ensured a more accurate representation of the data, facilitating better clustering performance. The third objective focused on enhancing the gap statistic for selecting the optimal number of clusters. This was achieved by standardizing the expected value of reference data using an exponential distribution, providing a more reliable criterion for determining the appropriate number of clusters. Experimental results demonstrated that the winsorization method effectively handles outliers, leading to improved clustering stability. The KROMD method significantly enhanced the accuracy of converting non-spherical data into spherical form, achieving an accuracy level of 0.83 percent and an execution time of 0.14 per second. Furthermore, the enhanced gap statistic method outperformed other techniques in selecting the optimal number of clusters, achieving an accuracy of 93.35 percent and an execution time of 0.1433 per second. These advancements collectively enhance the performance of K-means clustering, making it more robust and effective for complex data analysis tasks.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的可仁完成签到,获得积分10
1秒前
Ooops完成签到,获得积分10
1秒前
1秒前
2秒前
无风风发布了新的文献求助10
2秒前
十一完成签到,获得积分10
4秒前
4秒前
科研通AI6应助自觉葶采纳,获得10
5秒前
一只CY发布了新的文献求助10
6秒前
森宝完成签到,获得积分10
6秒前
6秒前
盯盯盯发布了新的文献求助10
6秒前
思源应助诚心谷南采纳,获得10
6秒前
7秒前
7秒前
Andy完成签到,获得积分10
8秒前
8秒前
无花果应助xuan采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
风中凌旋应助玩命的凝天采纳,获得20
10秒前
今后应助肉燕采纳,获得10
11秒前
闵卷完成签到,获得积分10
11秒前
llllll发布了新的文献求助10
13秒前
领导范儿应助Andy采纳,获得10
13秒前
呱呱呱发布了新的文献求助10
13秒前
汉堡包应助如奇采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
Ava应助浩然采纳,获得30
16秒前
科研通AI6应助优秀的傲南采纳,获得10
17秒前
17秒前
19秒前
诚心谷南发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718