Predicting phases and hardness of high entropy alloys based on machine learning

高熵合金 材料科学 熵(时间箭头) 热力学 原子半径 冶金 微观结构 物理 量子力学
作者
Li Shen,Li Chen,Jianhong Huang,Jichang He,Zhanjiang Li,Jian Pan,Fa Chang,Pinqiang Dai,Qunhua Tang
出处
期刊:Intermetallics [Elsevier BV]
卷期号:162: 108030-108030 被引量:10
标识
DOI:10.1016/j.intermet.2023.108030
摘要

The mechanical properties of high entropy alloys are highly dependent on phase structure. Therefore, accurate prediction of the phase structure is a guide to composition selection and performance enhancement, and it saves both experimental and financial expenditure. In this study, seven classification models were selected to predict the phase structure of high-entropy alloys and six regression models were selected to predict the hardness, and it was found that the XGB model performed best in both classification and regression predictions, where in the prediction phase structure, the XGB model has an error rate of 4.5% in the 10% prediction set, 11.6% in the 20% prediction set and 6.25% in the 30% prediction set. In predicting the hardness, the RMSE and MAE evaluation indexes of the XGB model are 52.66, 26.49. The δ (atomic radius difference) feature parameter having the strongest contribution to the phase formation in the high-entropy alloys. In addition, valence electron concentration(VEC), y/n BCC (The presence or absence of BCC) and y/n lm (The presence or absence of other phases) were key features affecting the hardness. Predictive analysis of two high-entropy alloys, AlCoCrFeNi and AlCoCrFeNiTi0.5, and a characterization effect map based on the Shapley additive explanations (SHAP) framework were developed to provide decision support for hardness assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐嘉懿完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
斐嘿嘿发布了新的文献求助30
1秒前
coolkid应助不太热烈采纳,获得10
4秒前
xiaohongmao完成签到,获得积分10
5秒前
5秒前
lyon发布了新的文献求助10
6秒前
7秒前
8秒前
xyawl425完成签到,获得积分10
9秒前
彭于晏应助激动的钢铁侠采纳,获得30
9秒前
飘逸菀关注了科研通微信公众号
10秒前
lyon完成签到,获得积分10
10秒前
SciGPT应助zzz采纳,获得10
13秒前
13秒前
机智的誉发布了新的文献求助10
14秒前
14秒前
滴滴发布了新的文献求助30
18秒前
激动的钢铁侠完成签到,获得积分20
19秒前
易辙完成签到,获得积分10
19秒前
曼林南烟完成签到,获得积分10
20秒前
甜甜十三完成签到,获得积分10
21秒前
机智的誉完成签到,获得积分10
21秒前
浪子完成签到,获得积分20
23秒前
科研通AI5应助lucyu2668采纳,获得10
23秒前
yaojiayoua完成签到 ,获得积分20
24秒前
大豆终结者完成签到,获得积分10
25秒前
polysaccharide完成签到,获得积分10
35秒前
Arthur完成签到 ,获得积分10
36秒前
英俊的铭应助laika采纳,获得10
37秒前
38秒前
儒雅醉冬完成签到,获得积分10
39秒前
小洪俊熙完成签到,获得积分10
40秒前
大模型应助Xyx采纳,获得10
40秒前
Hululu完成签到 ,获得积分10
40秒前
41秒前
完美世界应助欣慰的白羊采纳,获得10
42秒前
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846026
求助须知:如何正确求助?哪些是违规求助? 3388389
关于积分的说明 10553009
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713255
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982