An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm

核主成分分析 支持向量机 计算机科学 粒子群优化 极限学习机 人工智能 算法 人工神经网络 模式识别(心理学) 核方法
作者
Rui Quan,Wenlong Liang,Junhui Wang,Xuerong Li,Yufang Chang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:50: 1184-1196 被引量:36
标识
DOI:10.1016/j.ijhydene.2023.10.019
摘要

Proton exchange membrane fuel cells (PEMFC) have a broad development prospect in the fields of vehicles, drones and ships due to their high efficiency and cleanliness. However, the problems of insufficient reliability and durability have severely restricted their industrialization process. To improve the safety, reliability and durability of fuel cell system, a fault diagnosis method that combined kernel principal component analysis (KPCA) with an improved sparrow search algorithm (ISSA) and an optimized kernel extreme learning machine (KELM) was proposed in this study. Firstly, KPCA is utilized to extract nonlinear features from fault indicators and obtain the fault feature vector of the fuel cell system. Then, by incorporating logistic mapping and Cauchy Gaussian mutation strategies to improve the Sparrow Search Algorithm (SSA), ISSA was used to optimize the kernel parameters and regularization coefficient in KELM. The experimental results show that the KPCA-ISSA-KELM method for normal conditions, hydrogen leakage and membrane drying are 100%, 98.5% and 100%, respectively, with an overall accuracy of 99.5% and an operation time of 0.97s. The diagnostic accuracy of the proposed method is 10.4%, 5.7%, 4.8%, 4.2%, 3.0%, 1.8% higher than support vector machine (SVM), back propagation neural network (BPNN), KELM, genetic algorithm-based KELM (GA-KELM), particle swarm optimization-based KELM (PSO-KELM) and SSA-KELM, respectively, and the operation time is only slightly higher than that of the SVM model and KELM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yin景景发布了新的文献求助10
1秒前
一一完成签到,获得积分20
2秒前
2秒前
2秒前
Cee发布了新的文献求助10
3秒前
3秒前
结实灭男完成签到 ,获得积分10
4秒前
大模型应助pansy采纳,获得30
6秒前
小二郎应助燕子采纳,获得10
6秒前
jinzhen发布了新的文献求助10
6秒前
情怀应助谷旭琳采纳,获得10
7秒前
Zhe应助mzh采纳,获得10
8秒前
DukeAn809发布了新的文献求助10
8秒前
研友_85YJY8发布了新的文献求助10
8秒前
流川封完成签到,获得积分10
9秒前
fengzi151发布了新的文献求助10
9秒前
哒哒完成签到,获得积分10
10秒前
10秒前
CCsouljump完成签到 ,获得积分10
10秒前
sanlang应助面向阳光采纳,获得10
11秒前
香蕉觅云应助111采纳,获得10
11秒前
14秒前
yygz0703完成签到 ,获得积分10
15秒前
bkagyin应助加油采纳,获得10
18秒前
19秒前
共享精神应助一一采纳,获得10
19秒前
21秒前
FYYYYY发布了新的文献求助30
21秒前
畅快海云完成签到 ,获得积分10
23秒前
wuyilin完成签到,获得积分20
24秒前
丰富靖琪完成签到 ,获得积分10
24秒前
顾矜应助smm采纳,获得10
24秒前
Hana发布了新的文献求助10
26秒前
无花果应助烫头仙子采纳,获得10
26秒前
DukeAn809完成签到,获得积分10
27秒前
冰峰火舞给冰峰火舞的求助进行了留言
28秒前
面向阳光完成签到,获得积分10
29秒前
马小波完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870170
求助须知:如何正确求助?哪些是违规求助? 6459242
关于积分的说明 15662971
捐赠科研通 4986164
什么是DOI,文献DOI怎么找? 2688723
邀请新用户注册赠送积分活动 1631082
关于科研通互助平台的介绍 1589155