An enhanced fault diagnosis method for fuel cell system using a kernel extreme learning machine optimized with improved sparrow search algorithm

核主成分分析 支持向量机 计算机科学 粒子群优化 极限学习机 人工智能 算法 人工神经网络 模式识别(心理学) 核方法
作者
Rui Quan,Wenlong Liang,Junhui Wang,Xuerong Li,Yufang Chang
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:50: 1184-1196 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.10.019
摘要

Proton exchange membrane fuel cells (PEMFC) have a broad development prospect in the fields of vehicles, drones and ships due to their high efficiency and cleanliness. However, the problems of insufficient reliability and durability have severely restricted their industrialization process. To improve the safety, reliability and durability of fuel cell system, a fault diagnosis method that combined kernel principal component analysis (KPCA) with an improved sparrow search algorithm (ISSA) and an optimized kernel extreme learning machine (KELM) was proposed in this study. Firstly, KPCA is utilized to extract nonlinear features from fault indicators and obtain the fault feature vector of the fuel cell system. Then, by incorporating logistic mapping and Cauchy Gaussian mutation strategies to improve the Sparrow Search Algorithm (SSA), ISSA was used to optimize the kernel parameters and regularization coefficient in KELM. The experimental results show that the KPCA-ISSA-KELM method for normal conditions, hydrogen leakage and membrane drying are 100%, 98.5% and 100%, respectively, with an overall accuracy of 99.5% and an operation time of 0.97s. The diagnostic accuracy of the proposed method is 10.4%, 5.7%, 4.8%, 4.2%, 3.0%, 1.8% higher than support vector machine (SVM), back propagation neural network (BPNN), KELM, genetic algorithm-based KELM (GA-KELM), particle swarm optimization-based KELM (PSO-KELM) and SSA-KELM, respectively, and the operation time is only slightly higher than that of the SVM model and KELM model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsj发布了新的文献求助10
1秒前
赵爽完成签到,获得积分10
1秒前
1秒前
黄佳完成签到,获得积分20
1秒前
2秒前
Orange应助欣喜大地采纳,获得10
2秒前
3秒前
传奇3应助恶恶么v采纳,获得10
3秒前
dylaner完成签到,获得积分10
4秒前
5秒前
淡淡的早晨应助accompany采纳,获得10
5秒前
Yan0909发布了新的文献求助10
6秒前
小羊咩咩发布了新的文献求助10
6秒前
科研通AI5应助bwl采纳,获得10
6秒前
7秒前
棉花完成签到,获得积分20
8秒前
蕊蕊蕊完成签到 ,获得积分10
9秒前
Zq发布了新的文献求助10
9秒前
嘀嘀菇菇完成签到 ,获得积分10
10秒前
hehehe发布了新的文献求助10
10秒前
10秒前
十一发布了新的文献求助10
10秒前
慕青应助zhuangxiong采纳,获得10
12秒前
anton发布了新的文献求助10
13秒前
11122发布了新的文献求助10
13秒前
13秒前
内向的元珊完成签到,获得积分10
14秒前
汉堡包应助xqwwqx采纳,获得10
14秒前
14秒前
菘蓝泽蓼完成签到,获得积分10
15秒前
碧蓝的凝竹完成签到,获得积分10
16秒前
还单身的玫瑰完成签到,获得积分10
17秒前
星辰大海应助11122采纳,获得10
18秒前
18秒前
遇上就这样吧应助气味采纳,获得10
19秒前
大模型应助要懒死了hhh采纳,获得10
20秒前
Orange应助碧蓝的凝竹采纳,获得10
20秒前
丘比特应助伶俐如冰采纳,获得10
20秒前
20秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791285
求助须知:如何正确求助?哪些是违规求助? 3335809
关于积分的说明 10277370
捐赠科研通 3052520
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761102