A graph-guided collaborative convolutional neural network for fault diagnosis of electromechanical systems

卷积神经网络 计算机科学 图形 人工智能 机器学习 断层(地质) 传感器融合 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数据挖掘 理论计算机科学 地震学 地质学
作者
Yadong Xu,Jinchen Ji,Qing Ni,Ke Feng,Michael Beer,Hongtian Chen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110609-110609 被引量:33
标识
DOI:10.1016/j.ymssp.2023.110609
摘要

Collaborative fault diagnosis has become a hot research topic in fault detection and identification, greatly benefiting from emerging multisensory fusion techniques and newly developed convolutional neural network (CNN) models. Existing CNN models take advantage of various fusion techniques to identify machine health status by utilizing multiple sensory signals. Nevertheless, a few of them are able to simultaneously explore modality-specific features and intrinsic shared features among multi-source signals, limiting the capability of the exploration of multisource data. To address this issue, this paper proposes a novel convolutional network called a graph-guided collaborative convolutional neural network (GGCN) for highly-effective fault diagnosis of electromechanical systems. The main contributions of this study include: (1) developing a novel graph-guided CNN algorithm for collaborative fault detection; (2) establishing a graph reasoning fusion module (GRFM) to explore the inherent correlations between multisource signals; and (3) advancing the current approaches by taking into account both the distribution gap and the intrinsic correlation between different signals simultaneously. The developed GGCN is expected to shed new light on collaborative fault diagnosis using the graph-convolution-based intermediate fusion scheme. Two experimental datasets namely, the cylindrical rolling bearing dataset and the planetary gearbox dataset, are applied in this paper to verify the efficacy of the GGCN. Experimental results demonstrate that GGCN outperforms seven other state-of-the-art approaches, particularly under noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助韩强采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
xiaomu发布了新的文献求助10
3秒前
11_23完成签到,获得积分10
4秒前
4秒前
千屿发布了新的文献求助10
5秒前
大个应助忐忑的天真采纳,获得10
7秒前
sfsfes完成签到 ,获得积分10
14秒前
15秒前
杰jay发布了新的文献求助20
17秒前
NICAI应助玉崟采纳,获得10
18秒前
19秒前
bkagyin应助PanZi采纳,获得10
19秒前
郁金香发布了新的文献求助10
20秒前
ghostpants完成签到,获得积分10
21秒前
22秒前
凤凰发布了新的文献求助10
24秒前
24秒前
24秒前
Ly啦啦啦完成签到,获得积分10
26秒前
26秒前
宇DADA完成签到,获得积分10
27秒前
HanStar完成签到,获得积分20
27秒前
27秒前
包容半鬼发布了新的文献求助10
27秒前
28秒前
科研通AI5应助杭苑博采纳,获得10
28秒前
清脆南蕾发布了新的文献求助10
29秒前
一品真意完成签到,获得积分10
30秒前
达俐融发布了新的文献求助10
31秒前
陨_发布了新的文献求助10
33秒前
充电宝应助杰jay采纳,获得10
33秒前
33秒前
彩色靖儿发布了新的文献求助10
33秒前
完美世界应助清脆南蕾采纳,获得30
34秒前
34秒前
qian完成签到 ,获得积分10
34秒前
35秒前
36秒前
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Grammar in Action: Building comprehensive grammars of talk-in-interaction 1000
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4195132
求助须知:如何正确求助?哪些是违规求助? 3730726
关于积分的说明 11750619
捐赠科研通 3405767
什么是DOI,文献DOI怎么找? 1868560
邀请新用户注册赠送积分活动 924788
科研通“疑难数据库(出版商)”最低求助积分说明 835532