清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].

医学 接收机工作特性 逻辑回归 重症监护室 机器学习 决策树 人工智能 败血症 随机森林 急诊医学 支持向量机 重症监护 重症监护医学 内科学 计算机科学
作者
Manchen Zhu,Chunying Hu,Yinyan He,Yanchun Qian,Sujuan Tang,Qinghe Hu,Cuiping Hao
出处
期刊:PubMed 卷期号:35 (7): 696-701 被引量:1
标识
DOI:10.3760/cma.j.cn121430-20221219-01104
摘要

To analyze the risk factors of in-hospital death in patients with sepsis in the intensive care unit (ICU) based on machine learning, and to construct a predictive model, and to explore the predictive value of the predictive model.The clinical data of patients with sepsis who were hospitalized in the ICU of the Affiliated Hospital of Jining Medical University from April 2015 to April 2021 were retrospectively analyzed,including demographic information, vital signs, complications, laboratory examination indicators, diagnosis, treatment, etc. Patients were divided into death group and survival group according to whether in-hospital death occurred. The cases in the dataset (70%) were randomly selected as the training set for building the model, and the remaining 30% of the cases were used as the validation set. Based on seven machine learning models including logistic regression (LR), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), extreme gradient boosting (XGBoost) and artificial neural network (ANN), a prediction model for in-hospital mortality of sepsis patients was constructed. The receiver operator characteristic curve (ROC curve), calibration curve and decision curve analysis (DCA) were used to evaluate the predictive performance of the seven models from the aspects of identification, calibration and clinical application, respectively. In addition, the predictive model based on machine learning was compared with the sequential organ failure assessment (SOFA) and acute physiology and chronic health evaluation II (APACHE II) models.A total of 741 patients with sepsis were included, of which 390 were discharged after improvement, 351 died in hospital, and the in-hospital mortality was 47.4%. There were significant differences in gender, age, APACHE II score, SOFA score, Glasgow coma score (GCS), heart rate, oxygen index (PaO2/FiO2), mechanical ventilation ratio, mechanical ventilation time, proportion of norepinephrine (NE) used, maximum NE, lactic acid (Lac), activated partial thromboplastin time (APTT), albumin (ALB), serum creatinine (SCr), blood urea nitrogen (BUN), blood uric acid (BUA), pH value, base excess (BE), and K+ between the death group and the survival group. ROC curve analysis showed that the area under the curve (AUC) of RF, XGBoost, LR, ANN, DT, SVM, KNN models, SOFA score, and APACHE II score for predicting in-hospital mortality of sepsis patients were 0.871, 0.846, 0.751, 0.747, 0.677, 0.657, 0.555, 0.749 and 0.760, respectively. Among all the models, the RF model had the highest precision (0.750), accuracy (0.785), recall (0.773), and F1 score (0.761), and best discrimination. The calibration curve showed that the RF model performed best among the seven machine learning models. DCA curve showed that the RF model exhibited greater net benefit as well as threshold probability compared to other models, indicating that the RF model was the best model with good clinical utility.The machine learning model can be used as a reliable tool for predicting in-hospital mortality in sepsis patients. RF models has the best predictive performance, which is helpful for clinicians to identify high-risk patients and implement early intervention to reduce mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LELE完成签到 ,获得积分10
59秒前
虚幻小丸子完成签到 ,获得积分10
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
KINGAZX完成签到 ,获得积分10
2分钟前
nav完成签到 ,获得积分10
2分钟前
星辰完成签到 ,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Ya完成签到 ,获得积分10
3分钟前
gloval完成签到,获得积分10
3分钟前
cadcae完成签到,获得积分10
3分钟前
hanhan完成签到 ,获得积分10
3分钟前
满意的伊完成签到,获得积分10
4分钟前
方白秋完成签到,获得积分10
4分钟前
儒雅龙完成签到 ,获得积分10
4分钟前
Yam呀完成签到 ,获得积分10
4分钟前
eee应助皮盼旋采纳,获得30
5分钟前
于听枫完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
sun发布了新的文献求助10
5分钟前
友好的白柏完成签到 ,获得积分10
5分钟前
无花果应助sun采纳,获得10
5分钟前
gloval发布了新的文献求助30
6分钟前
林利芳完成签到 ,获得积分10
6分钟前
xliang233完成签到 ,获得积分10
8分钟前
Ricardo完成签到 ,获得积分10
8分钟前
xingsixs完成签到 ,获得积分10
10分钟前
英姑应助莓卡卡的小葡萄采纳,获得10
10分钟前
无奈的代珊完成签到 ,获得积分10
10分钟前
11分钟前
小羊发布了新的文献求助10
11分钟前
coco完成签到,获得积分10
11分钟前
领导范儿应助小羊采纳,获得10
11分钟前
11分钟前
11分钟前
Fern完成签到 ,获得积分10
11分钟前
莓卡卡的小葡萄完成签到,获得积分10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779174
求助须知:如何正确求助?哪些是违规求助? 3324762
关于积分的说明 10219859
捐赠科研通 3039903
什么是DOI,文献DOI怎么找? 1668502
邀请新用户注册赠送积分活动 798671
科研通“疑难数据库(出版商)”最低求助积分说明 758503