Deep Fusion for Multi-Modal 6D Pose Estimation

人工智能 模式 RGB颜色模型 计算机科学 姿势 模态(人机交互) 计算机视觉 点云 融合机制 情态动词 特征(语言学) 模式识别(心理学) 融合 社会科学 语言学 哲学 化学 脂质双层融合 社会学 高分子化学
作者
Shifeng Lin,Zunran Wang,Shenghao Zhang,Yonggen Ling,Chenguang Yang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6540-6549 被引量:7
标识
DOI:10.1109/tase.2023.3327772
摘要

6D pose estimation with individual modality encounters difficulties due to the limitations of modalities, such as RGB information on textureless objects and depth on reflective objects. This can be improved by exploiting the complementarity between modalities. Most of the previous methods only consider the correspondence between point clouds and RGB images and directly extract the features of the corresponding two modalities for fusion, which ignore the information of the modality itself and are negatively affected by erroneous background information when introducing more features for fusion. To enhance the complementarities between multiple modalities, we propose a neighbor-based cross-modalities attention mechanism for multi-modal 6D pose estimation. Neighbors represent that the RGB features of multiple neighbor are applied for fusion, which expands the receptive field. The cross-modalities attention mechanism leverages the similarities between the different modal features to help modal feature fusion, which reduces the negative impact of incorrect background information. Moreover, we design some features between the rendered image and the original image to obtain the confidence of pose estimation results. Experimental results on LM, LM-O and YCB-V datasets demonstrate the effectiveness of our methods. Video is available at https://www.youtube.com/watch?v=ApNBcX6NEGs. Note to Practitioners —Introducing the information of surrounding points during multi-modal fusion improves the performance of 6D pose estimation. For example, the RGB image corresponding to some point clouds on the object may lack rich texture features while the neighbors exist. However, most methods of modal fusion based on RGBD for 6D pose estimation only simply consider the corresponding between RGB images and point clouds for feature fusion, which may bring redundant information or the wrong background information when introducing neighbor information. In this paper, we propose a cross-modal attention mechanism based on neighbor information. By introducing the information of the modality itself to obtain the weight of the neighbor information of another modality in the encoding and decoding stages, the receptive field is expanded and the complementarities between different modalities are enhanced. The experiment shows our effectiveness. In addition, we provide a pose confidence estimator for predicted pose results. Specifically, the rendered image with the predicted pose and the real image are applied to extract features for the decision tree. The experimental results show that the result of the wrong estimation can be eliminated with high accuracy and recall. The 6D pose confidence can provide a reference for real-world grasping. However, the current method can only estimate objects with known models. In the future, we will consider applying the method to unseen objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssion完成签到,获得积分10
刚刚
soothe发布了新的文献求助10
1秒前
yangxiaoya完成签到,获得积分20
1秒前
笃思发布了新的文献求助10
1秒前
搜集达人应助otto12306采纳,获得10
2秒前
T_KYG发布了新的文献求助10
2秒前
远航发布了新的文献求助20
2秒前
CodeCraft应助活力的焱采纳,获得10
2秒前
何哈哈哈发布了新的文献求助10
3秒前
5秒前
洋洋羊发布了新的文献求助10
5秒前
qiukui发布了新的文献求助10
5秒前
5秒前
7秒前
在水一方应助大米哈哈采纳,获得10
8秒前
8秒前
卢jj发布了新的文献求助30
8秒前
xxx完成签到,获得积分10
8秒前
优秀夜玉发布了新的文献求助10
9秒前
时尚蜻蜓发布了新的文献求助10
11秒前
11秒前
shuang完成签到 ,获得积分10
11秒前
wow完成签到,获得积分10
12秒前
鲲鹏戏龙完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
寒冷的浩轩完成签到,获得积分10
14秒前
汉堡包应助WN采纳,获得10
15秒前
16秒前
时尚蜻蜓完成签到,获得积分10
16秒前
王111发布了新的文献求助10
17秒前
18秒前
蜗牛发布了新的文献求助50
18秒前
清脆巧蕊完成签到,获得积分10
19秒前
19秒前
王111完成签到,获得积分10
22秒前
22秒前
刘腾发布了新的文献求助10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417068
求助须知:如何正确求助?哪些是违规求助? 4533127
关于积分的说明 14138228
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432456
关于科研通互助平台的介绍 1409858