Self-Supervised Feature Learning Based on Spectral Masking for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征提取 深度学习 特征学习 特征(语言学) 上下文图像分类 图像(数学) 哲学 语言学
作者
Weiwei Liu,Kai Liu,Weiwei Sun,Gang Yang,Kai Ren,Xiangchao Meng,Jiangtao Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:22
标识
DOI:10.1109/tgrs.2023.3310489
摘要

Deep learning has emerged as a powerful method for hyperspectral image (HSI) classification. However, a significant prerequisite for HSI classification using deep learning is enough labeled samples, which is both time-consuming and labor-intensive. Yet, labeled samples are essential for training deep learning models. This paper proposes an HSI classification method based on the self-supervised learning of spectral masking (SSLSM). The method mainly includes two steps: self-supervised pre-training and fine-tuning. First, considering the rich spectral information of HSI, we propose masked spectral reconstruction as the pretext task. The unmasked data is input into the encoder and decoder sequentially, which are composed of a multi-layer transformer, for feature learning for masked spectral reconstruction. Second, we use reference samples to fine-tune the network, and the encoder and decoder are innovatively cascaded for deep semantic feature extraction, which can further improve the ability of feature extraction in the downstream classification tasks. Experiment results show that, compared with other methods, the SSLSM obtains the highest classification accuracy of 96.52%, 97.03%, and 96.70% on the Indian Pines dataset, Pavia University dataset, and Yancheng Wetlands dataset, respectively. Our method can also be applied to other HSI datasets, and the codes will be available from https://github.com/CIRSM-GRoup/2023-TGRS-SSLSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1122完成签到 ,获得积分10
1秒前
请问发布了新的文献求助10
1秒前
kingwill举报求助违规成功
1秒前
SOL举报求助违规成功
1秒前
bc举报求助违规成功
1秒前
1秒前
2秒前
猪猪hero应助kelexh采纳,获得10
2秒前
LOVE0077完成签到,获得积分10
2秒前
4秒前
5秒前
carl发布了新的文献求助10
6秒前
7秒前
偶然发现的西柚完成签到 ,获得积分10
7秒前
W29完成签到 ,获得积分10
10秒前
BEN完成签到,获得积分10
10秒前
APPLE完成签到 ,获得积分10
10秒前
断章发布了新的文献求助10
12秒前
内向尔安发布了新的文献求助10
12秒前
12秒前
wanci应助carl采纳,获得10
14秒前
是小越啊完成签到,获得积分10
14秒前
Ss完成签到,获得积分10
14秒前
che完成签到,获得积分10
17秒前
18秒前
12完成签到,获得积分10
18秒前
20秒前
张文博完成签到,获得积分10
22秒前
请问发布了新的文献求助10
24秒前
张文博发布了新的文献求助10
27秒前
serpant发布了新的文献求助10
28秒前
李爱国应助断章采纳,获得10
36秒前
serpant完成签到,获得积分10
37秒前
wy.he应助爱学习的小美采纳,获得10
38秒前
或无情完成签到 ,获得积分10
39秒前
香菜应助科研通管家采纳,获得10
39秒前
共享精神应助科研通管家采纳,获得10
40秒前
wanci应助科研通管家采纳,获得10
40秒前
Orange应助科研通管家采纳,获得10
40秒前
科研小民工应助张文博采纳,获得200
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315