Remaining useful life prediction of lithium-ion batteries using EM-PF-SSA-SVR with gamma stochastic process

计算机科学 支持向量机 稳健性(进化) 非线性系统 机器学习 生物化学 化学 物理 量子力学 基因
作者
You Keshun,Guangqi Qiu,Yingkui Gu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015015-015015 被引量:47
标识
DOI:10.1088/1361-6501/acfbef
摘要

Abstract Due to the complex changes in physicochemical properties of lithium-ion batteries during the process from degradation to failure, it is difficult for methods based on physical or data-driven models to fully characterize this nonlinear process, and existing methods that hybridize physical and data-driven models suffer from ambiguous hybridization, which results in the vast majority of existing methods for predicting the remaining useful life (RUL) of lithium-ion batteries suffering from a lack of accuracy and robustness. In this study, a novel hybrid approach based on empirical modeling and data-driven techniques is proposed for predicting the RUL of lithium-ion batteries. To better capture its complexity, stochasticity, and state transition, and improve the modeling accuracy and RUL prediction precision, Gamma stochasticity and state-space modeling are used to empirically model the complex Li-ion battery degradation process. Moreover, the expectation maximization (EM) method of particle filtering (PF) was used to estimate the hidden parameters of the empirical model, and the estimated parameters were corrected using an optimized support vector regression (SVR) method to enhance the generalization performance and robustness of the data-driven model. The results show that the gamma state-space model is effective in capturing the inherent stochastic properties of the battery degradation and the proposed hybrid method outperforms the existing prediction methods in RUL prediction. The experiments show that the sparrow search algorithm (SSA) optimized SVR is considered to be the most effective correction method for the estimated parameters, while the new EM-PF-SSA-SVR hybrid method provides better performance for state assessment and RUL prediction of lithium-ion batteries. It is indicated that the proposed EM-PF-SSA-SVR method with Gamma stochastic process has hybrid validity and superior performance with equal performance and less parameter computation relative to the existing state-of-the-art deep learning RUL prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
完美星落完成签到,获得积分10
5秒前
顾矜应助可靠的映阳采纳,获得10
7秒前
科研通AI5应助我不是阿呆采纳,获得30
8秒前
jiulin发布了新的文献求助30
8秒前
9秒前
12秒前
13秒前
13秒前
奶糖喵完成签到 ,获得积分10
15秒前
Dr.Dream完成签到,获得积分10
15秒前
风中梦蕊发布了新的文献求助10
16秒前
夏禾发布了新的文献求助10
16秒前
17秒前
点酒成诗发布了新的文献求助10
19秒前
xinC发布了新的文献求助10
20秒前
正直涵菱完成签到 ,获得积分10
21秒前
23秒前
li完成签到 ,获得积分10
25秒前
华仔应助LHL采纳,获得10
30秒前
月亮发布了新的文献求助10
33秒前
妮妮完成签到,获得积分10
33秒前
夏禾完成签到,获得积分10
36秒前
38秒前
hdy331完成签到,获得积分10
41秒前
jiulin完成签到,获得积分20
41秒前
nhx完成签到,获得积分10
43秒前
45秒前
45秒前
老广发布了新的文献求助10
47秒前
50秒前
可靠的雪青完成签到 ,获得积分10
51秒前
LHL发布了新的文献求助10
52秒前
脑洞疼应助LHL采纳,获得10
56秒前
香蕉觅云应助清新的音响采纳,获得10
59秒前
科研通AI5应助轻松小张采纳,获得10
59秒前
佰斯特威应助pengyh8采纳,获得10
1分钟前
1分钟前
bkagyin应助Xx采纳,获得10
1分钟前
nnnnnn完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777324
求助须知:如何正确求助?哪些是违规求助? 3322593
关于积分的说明 10210806
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797900
科研通“疑难数据库(出版商)”最低求助积分说明 758072