Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013–2019

环境科学 人口 索引(排版) 线性回归 统计 气象学 大气科学 自然地理学 地理 数学 计算机科学 人口学 地质学 万维网 社会学
作者
Bin Guo,Tingting Xie,Wencai Zhang,Haojie Wu,Dingming Zhang,Xiaowei Zhu,Xuying Ma,Min Wu,Pingping Luo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:905: 167309-167309 被引量:14
标识
DOI:10.1016/j.scitotenv.2023.167309
摘要

Climate change caused by CO2 emissions (CE) has received widespread global concerns. Obtaining precision CE data is necessary for achieving carbon peak and carbon neutrality. Significant deficiencies of existing CE datasets such as coarse spatial resolution and low precision can hardly meet the actual requirements. An enhanced population-light index (RPNTL) was developed in this study, which integrates the Nighttime Light Digital Number (DN) Value from the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) and population density to improve CE estimation accuracy. The CE from the Carbon Emission Accounts & Datasets (CEADS) was divided into three sectors, namely urban, industrial, and rural, to differentiate the heterogeneity of CE in each sector. The ordinary least square (OLS), geographically weighted regression (GWR), temporally weighted regression (TWR), and geographically and temporally weighted regression (GTWR) models were employed to establish the quantitative relationship between RPNTL and CE for each sector. The optimal model was determined through model comparison and precision evaluation and was utilized to rasterize CE for urban, industrial, and rural areas. Additionally, hot spot analysis, trend analysis, and standard deviation ellipses were introduced to demonstrate the spatiotemporal dynamic characteristics of CE at multiple scales. The performance of the GTWR outperformed other methods in estimating CE. The enhanced RPNTL demonstrated a higher coefficient of determination (R2 = 0.95) than the NTL (R2 = 0.92) in predicting CE, particularly in rural regions where the R2 value increased from 0.76 to 0.81. From 2013 to 2019, high CE was observed in eastern and northern China, while a decreasing trend was detected in northeastern China and Chengdu-Chongqing. Conversely, the Yangtze River Delta, Pearl River Delta, Fenwei Plain, and Henan Province showed an increasing trend. The center of gravity for industrial and rural CE is shifting towards western regions, whereas that for urban CE is moving northward. This study provides valuable insights for decision-making on CE control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小包子完成签到,获得积分10
刚刚
HtObama完成签到,获得积分10
刚刚
ding应助LSS采纳,获得10
1秒前
heavennew完成签到,获得积分10
1秒前
苏安莲完成签到,获得积分10
1秒前
秘小先儿完成签到,获得积分10
2秒前
阿龍完成签到 ,获得积分10
2秒前
hetao286完成签到,获得积分10
2秒前
感恩的心完成签到,获得积分10
2秒前
Drew11完成签到,获得积分10
2秒前
兰lanlan完成签到,获得积分10
2秒前
XJY完成签到,获得积分10
3秒前
无限钻石完成签到,获得积分10
3秒前
xhuryts完成签到,获得积分10
3秒前
Turing完成签到,获得积分10
3秒前
乳酪蚊完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
哈哈呀完成签到 ,获得积分10
5秒前
Orange应助欢呼的墨镜采纳,获得10
5秒前
5秒前
天天快乐应助wanwan采纳,获得10
6秒前
6秒前
天天向上完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
yoyo20012623完成签到,获得积分10
6秒前
Chen完成签到 ,获得积分10
7秒前
可可完成签到,获得积分10
7秒前
像猫的狗完成签到 ,获得积分10
8秒前
111发布了新的文献求助10
8秒前
nqterysc完成签到,获得积分10
8秒前
机灵柚子应助AoAoo采纳,获得10
9秒前
小兔子完成签到 ,获得积分10
10秒前
mojito发布了新的文献求助10
11秒前
11秒前
周周完成签到 ,获得积分10
11秒前
强健的冰棍完成签到,获得积分10
12秒前
天道酬勤发布了新的文献求助10
13秒前
江你一军完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526