Architecture of Vanadium‐Based MXene Dysregulating Tumor Redox Homeostasis for Amplified Nanozyme Catalytic/Photothermal Therapy

光热治疗 活性氧 肿瘤微环境 材料科学 光热效应 氧化应激 化学 生物物理学 纳米技术 癌症研究 生物化学 生物 肿瘤细胞
作者
Rongfang Zhao,Yiping Zhu,Lili Feng,Bin Liu,Yuqi Hu,Hao Zhu,Zhiyu Zhao,He Ding,Shili Gai,Piaoping Yang
出处
期刊:Advanced Materials [Wiley]
被引量:2
标识
DOI:10.1002/adma.202307115
摘要

Abstract Taking the significance of the special microenvironment for tumor cell survival into account, disrupting tumor redox homeostasis is highly prospective for improving therapeutic efficacy. Herein, a multifunctional 2D vanadium‐based MXene nanoplatform, V 4 C 3 /atovaquone@bovine albumin (V 4 C 3 /ATO@BSA, abbreviated as VAB) has been elaborately constructed for ATO‐enhanced nanozyme catalytic/photothermal therapy. The redox homeostasis within the tumor cells is eventually disrupted, showing a remarkable anti‐tumor effect. The VAB nanoplatform with mixed vanadium valence states can induce a cascade of catalyzed reactions in the tumor microenvironment, generating plenty of reactive oxygen species (ROS) with effective glutathione consumption to amplify oxidative stress. Meanwhile, the stable and strong photothermal effect of VAB under near‐infrared irradiation not only causes the necrosis of tumor cells, but also improves its peroxidase‐like activity. In addition, the release of ATO can effectively alleviate endogenous oxygen consumption to limit triphosadenine formation and inhibit mitochondrial respiration. As a result, the expression of heat shock proteins is effectively suppressed to overcome thermoresistance and the production of ROS can be further promoted due to mitochondrial injury. Moreover, VAB also presents high photoacoustic and photothermal imaging performances. In brief, the multifunctional nanoplatform can provide ATO‐enhanced nanozyme catalytic/photothermal therapy with broadening the biomedical applications of vanadium‐based MXene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的雨文完成签到,获得积分20
1秒前
1秒前
科研通AI2S应助景穆采纳,获得10
2秒前
CipherSage应助百里盼夏采纳,获得10
2秒前
蝈蝈发布了新的文献求助10
2秒前
nsc发布了新的文献求助10
3秒前
情怀应助文静弘文采纳,获得10
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
冷静映安完成签到,获得积分10
7秒前
7秒前
Hello应助缓慢的芸遥采纳,获得10
7秒前
美好的谷蓝完成签到 ,获得积分10
8秒前
CWNU_HAN应助爱啃大虾采纳,获得30
8秒前
8秒前
sr完成签到 ,获得积分10
10秒前
10秒前
10秒前
菜鸡发布了新的文献求助10
10秒前
zxj发布了新的文献求助10
10秒前
Imperry发布了新的文献求助10
11秒前
oui发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
一二应助葡萄没有籽采纳,获得10
12秒前
12秒前
13秒前
红红火火h发布了新的文献求助10
14秒前
ppg123应助清秀的靖琪采纳,获得10
16秒前
linleyan061完成签到,获得积分10
16秒前
依米zhang完成签到,获得积分10
16秒前
16秒前
文静弘文发布了新的文献求助10
16秒前
小何发布了新的文献求助10
17秒前
Jasper应助菜鸡采纳,获得10
17秒前
月亮睡啦完成签到 ,获得积分20
17秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Institution Building, Organisational Restructuring and Everyday Negotiations in Uganda's Roads Sector 500
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 300
Transformerboard III 300
R语言临床预测模型实战 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2359660
求助须知:如何正确求助?哪些是违规求助? 2066818
关于积分的说明 5162456
捐赠科研通 1795577
什么是DOI,文献DOI怎么找? 896893
版权声明 557630
科研通“疑难数据库(出版商)”最低求助积分说明 478753