SRCBTFusion-Net: An Efficient Fusion Architecture via Stacked Residual Convolution Blocks and Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 卷积神经网络 变压器 残余物 模式识别(心理学) 编码器 解码方法 计算机视觉 算法 电压 物理 量子力学 操作系统
作者
Junsong Chen,Jizheng Yi,Aibin Chen,Hui Lin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2023.3336689
摘要

Convolutional neural network (CNN) and Transformer-based self-attention models have their advantages in extracting local information and global semantic information, and it is a trend to design a model combining stacked residual convolution blocks (SRCB) and Transformer. How to efficiently integrate the two mechanisms to improve the segmentation effect of remote sensing (RS) images is an urgent problem to be solved. An efficient fusion via SRCB and Transformer (SRCBTFusion-Net) is proposed as a new semantic segmentation architecture for RS images. The SRCBTFusion-Net adopts an encoder-decoder structure, and the Transformer is embedded into SRCB to form a double coding structure, then the coding features are up-sampled and fused with multi-scale features of SRCB to form a decoding structure. Firstly, a semantic information enhancement module (SIEM) is proposed to get global clues for enhancing deep semantic information. Subsequently, the relationship guidance module (RGM) is incorporated to re-encode the decoder's upsampled feature maps, enhancing the edge segmentation performance. Secondly, a multipath atrous self-attention module (MASM) is developed to enhance the effective selection and weighting of low-level features, effectively reducing the potential confusion introduced by the skip connections between low-level and high-level features. Finally, a multi-scale feature aggregation module (MFAM) is developed to enhance the extraction of semantic and contextual information, thus alleviating the loss of image feature information and improving the ability to identify similar categories. The proposed SRCBTFusion-Net's performance on the Vaihingen and Potsdam datasets is superior to the state-of-the-art methods. The code will be freely available at https://github.com/js257/SRCBTFusion-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亮liang完成签到,获得积分10
1秒前
1秒前
luoye完成签到,获得积分10
1秒前
傅英俊发布了新的文献求助10
2秒前
2秒前
完美星落完成签到,获得积分10
3秒前
3秒前
5秒前
木子蕊完成签到,获得积分20
5秒前
搞份炸鸡778完成签到,获得积分10
5秒前
5秒前
胡胡完成签到 ,获得积分10
7秒前
ss完成签到 ,获得积分10
7秒前
YYMM发布了新的文献求助10
7秒前
tqim发布了新的文献求助10
8秒前
傅英俊完成签到,获得积分10
8秒前
沉溺发布了新的文献求助10
8秒前
9秒前
10秒前
Treasure发布了新的文献求助10
11秒前
科研通AI5应助独特的泽洋采纳,获得10
11秒前
77发布了新的文献求助20
11秒前
香蕉觅云应助环游世界采纳,获得10
11秒前
啾v咪完成签到 ,获得积分10
13秒前
kong发布了新的文献求助10
13秒前
13秒前
拉长的南松完成签到 ,获得积分10
14秒前
16秒前
yy完成签到,获得积分10
16秒前
困敦发布了新的文献求助10
16秒前
17秒前
Orange应助Zoe采纳,获得10
17秒前
18秒前
18秒前
19秒前
Memory完成签到,获得积分10
19秒前
syj完成签到,获得积分10
21秒前
21秒前
阿莫仙发布了新的文献求助10
21秒前
小贝发布了新的文献求助10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599