亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing milled rice qualitative classification with machine learning techniques using morphological features of binary images

人工智能 随机森林 计算机科学 分类器(UML) 模式识别(心理学) 局部二进制模式 机器学习 目视检查 分级(工程) 图像(数学) 工程类 直方图 土木工程
作者
Nuttaphon Sokudlor,Kittipong Laloon,Chaiyan Junsiri,Somposh Sudajan
出处
期刊:International Journal of Food Properties [Marcel Dekker]
卷期号:26 (2): 2978-2992 被引量:6
标识
DOI:10.1080/10942912.2023.2264533
摘要

Rice is a globally important agricultural crop, with extensive cultivation and consumption in Asia. In Thailand, it is a primary food crop and a crucial export commodity. However, ensuring the quality standards of Thai rice is challenging due to variations in grain mixtures, making conventional inspection methods laborious and time-consuming. Human judgment in visual inspection introduces the risk of discrepancies. To address this, a swift and accurate solution is needed for quality analysis and differentiation of rice grain categories. Image processing techniques and machine learning offer a promising approach for accurate rice grain classification and reducing human grading errors. In a recent study focused on jasmine rice (KDML 105) samples, images of rice grains were captured using a developed device. Morphological features related to shape and size were extracted through image processing. The Boruta algorithm was employed to select significant features, which were then used to train various machine learning classifiers. After training and validation, the random forest classifier demonstrated the highest performance and was chosen as the main classification model. It was then tested with a new dataset to evaluate its identification accuracy. The selected model successfully classified four categories of rice grains with an accuracy exceeding 99.00%. While research efforts have primarily focused on classifying rice varieties and detecting grain abnormalities, incorporating a combination of morphology, color, and texture features is essential for highly accurate predictions. However, when it comes to predicting rice grain types with distinct shapes and sizes, considering relevant morphological characteristics during the model development process is sufficient to achieve highly precise and accurate results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不能吃太饱完成签到 ,获得积分10
9秒前
高兴的白柏完成签到,获得积分10
17秒前
共享精神应助爱你哦采纳,获得10
56秒前
1分钟前
爱你哦发布了新的文献求助10
1分钟前
爱你哦完成签到,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
斯文败类应助东木采纳,获得10
1分钟前
汉堡包应助cc采纳,获得10
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
zsmj23完成签到 ,获得积分0
2分钟前
顺心十八发布了新的文献求助10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
十二倍根号二完成签到,获得积分10
3分钟前
走啊走应助顺心十八采纳,获得10
4分钟前
6分钟前
6分钟前
Hamakanma发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
9分钟前
东木发布了新的文献求助10
9分钟前
科研通AI6应助Gael采纳,获得30
9分钟前
时间煮雨我煮鱼完成签到,获得积分10
9分钟前
小黑马完成签到,获得积分10
9分钟前
彩虹儿应助孟繁荣采纳,获得10
10分钟前
10分钟前
10分钟前
11分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Gael发布了新的文献求助30
11分钟前
11分钟前
菠萝完成签到 ,获得积分0
12分钟前
量子星尘发布了新的文献求助10
12分钟前
Dasein完成签到 ,获得积分10
12分钟前
西瓜完成签到 ,获得积分10
12分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880379
求助须知:如何正确求助?哪些是违规求助? 4167005
关于积分的说明 12927443
捐赠科研通 3925915
什么是DOI,文献DOI怎么找? 2154946
邀请新用户注册赠送积分活动 1173067
关于科研通互助平台的介绍 1077398