浦肯野纤维
心脏病学
内科学
室性心动过速
医学
心室颤动
维拉帕米
导管消融
心动过速
心房颤动
电生理学
钙
作者
Akihiko Nogami,Yuki Komatsu,Ahmed Karim Talib,Wipat Phanthawimol,Qasim J. Naeemah,Tetsuya Haruna,Itsuro Morishima
标识
DOI:10.1016/j.jacep.2023.05.040
摘要
Of the monomorphic ventricular tachycardias, there are 4 specific tachycardias related to the Purkinje system: 1) idiopathic verapamil-sensitive fascicular ventricular tachycardia (FVT); 2) non-re-entrant FVT; 3) bundle branch re-entry and interfascicular re-entry; and 4) Purkinje-mediated VT in structural heart disease. Verapamil-sensitive FVT is classified into 4 types according to the location of the circuit: 1) left posterior type; 2) left anterior type; 3) left upper septal type;and 4) reverse type. And, in the left anterior and posterior types, there are septal and papillary muscle subtypes. Although macro-re-entry has been reported to be the mechanism underlying verapamil-sensitive FVT, recording the entire circuit is challenging. One possible reason is that the Purkinje-muscle junction may penetrate the myocardial layer as a part of the circuit. The Purkinje network may thus play an important role in the initiation and maintenance of ventricular fibrillation. Further, it has been reported that the development and the abnormalities of the Purkinje system are associated with the arrhythmogenesis of ventricular fibrillation. Furthermore, it has been reported that catheter ablation of trigger ventricular premature complexes, and/or "de-networking" of the Purkinje system, can be used as electrical bailout therapy. There is a hypothesis that the intramural Purkinje system is involved in the generation of J waves. Nevertheless, as there are still unresolved issues that must be debated and accurately analyzed, this review aims to discuss the solved and unsolved questions related to Purkinje-related arrhythmias.
科研通智能强力驱动
Strongly Powered by AbleSci AI