Out-of-Roundness Wheel Damage Identification in Railway Vehicles Using AutoEncoder Models

圆度(物体) 鉴定(生物学) 计算机科学 法律工程学 汽车工程 结构工程 工程类 机械工程 植物 生物
作者
Rodrigues Melo,Rafaelle Piazzaroli Finotti,António Guedes,Vítor A. Gonçalves,Andreia Meixedo,Diogo Ribeiro,Flávio de Souza Barbosa,Alexandre Cury
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (5): 2662-2662
标识
DOI:10.3390/app15052662
摘要

This study presents a comparative analysis of three AutoEncoder (AE) models—Variational AutoEncoder (VAE), Sparse AutoEncoder (SAE), and Convolutional AutoEncoder (CAE)—to detect and quantify structural anomalies in railway vehicle wheels, such as polygonization. Vertical acceleration data from a virtual wayside monitoring system serve as input for training the AE models, which are coupled with Hotelling’s T2 Control Charts to differentiate normal and abnormal railway component behaviors. The results indicate that the SAE-T2 model outperforms its counterparts, achieving 16.67% higher accuracy than the CAE-T2 model in identifying distinct structural conditions, although with a 35.78% higher computational cost. Conversely, the VAE-T2 model is outperformed in 100% of the analyzed scenarios when compared to SAE-T2 in identifying distinct structural conditions while also exhibiting a 21.97% higher average computational cost. Across all scenarios, the SAE-T2 methodology consistently provided better classifications of wheel damage, showing its capability to extract relevant features from dynamic signals for Structural Health Monitoring (SHM) applications. These findings highlight SAE’s potential as an interesting tool for predictive maintenance, offering improved efficiency and safety in railway operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助30
1秒前
荔枝酱完成签到,获得积分10
1秒前
5秒前
5秒前
SciGPT应助梦里格斗家采纳,获得10
7秒前
8秒前
9秒前
陈博文发布了新的文献求助10
10秒前
10秒前
12秒前
慕青应助牛牛眉目采纳,获得10
13秒前
14秒前
Kyle发布了新的文献求助10
15秒前
Mhj13810发布了新的文献求助10
15秒前
无花果应助MrX采纳,获得10
17秒前
parrowxg完成签到,获得积分20
17秒前
wlei发布了新的文献求助10
17秒前
18秒前
18秒前
tramp应助美好焦采纳,获得10
20秒前
21秒前
22秒前
23秒前
晓莹完成签到 ,获得积分10
23秒前
Jennifer完成签到,获得积分10
24秒前
Mhj13810发布了新的文献求助10
24秒前
24秒前
张叮当发布了新的文献求助10
26秒前
南边的海发布了新的文献求助10
27秒前
28秒前
shushu完成签到,获得积分20
28秒前
吉林完成签到 ,获得积分10
29秒前
Noob_saibot完成签到,获得积分10
29秒前
干饭大王应助Ling采纳,获得10
30秒前
linxy应助单薄飞莲采纳,获得30
30秒前
30秒前
30秒前
30秒前
无奈的盼望完成签到 ,获得积分10
30秒前
CR7应助Yellue采纳,获得20
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965327
求助须知:如何正确求助?哪些是违规求助? 3510649
关于积分的说明 11154320
捐赠科研通 3244935
什么是DOI,文献DOI怎么找? 1792731
邀请新用户注册赠送积分活动 874026
科研通“疑难数据库(出版商)”最低求助积分说明 804134