亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Bioconcentration Factors of Per- and Polyfluoroalkyl Substances Using a Directed Message Passing Neural Network with Multimodal Feature Fusion

生物浓缩 特征(语言学) 人工神经网络 融合 消息传递 计算机科学 人工智能 化学 环境化学 分布式计算 哲学 语言学 生物累积
作者
Jingzhi Yao,Yilu Shou,Nan Sheng,Yu Ma,Yitao Pan,Feng Zhao,Mingliang Fang,Jiayin Dai
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c13813
摘要

Amid growing concerns regarding the ecological risks posed by emerging contaminants, per- and polyfluoroalkyl substances (PFASs) present significant challenges for risk assessment due to their structural diversity and the paucity of experimental data on their bioaccumulation. This study investigated the bioconcentration factors (BCFs) of 18 emerging and legacy PFASs using zebrafish in a flow-through exposure system and constructed a robust BCF prediction model to address the data gaps associated with numerous novel PFASs. Experimental results indicated that perfluoro(3,5,7,9,11-pentaoxadodecanoic) acid (PFO5DoDA) and perfluoro-2,5-dimethyl-3,6-dioxanonanoic acid (C9 HFPO-TA) exhibited higher bioaccumulation potential than perfluorooctanoic acid (PFOA). A multimodal feature-fused directed message passing neural network (FF-DMPNN) model was constructed, integrating molecular graph representations, physicochemical descriptors, and bioassay data reflecting absorption, distribution, metabolism, and excretion characteristics. The FF-DMPNN model demonstrated superior predictive performance compared to conventional machine learning approaches by providing a more complete representation of molecular structures and physicochemical properties, achieving higher accuracy (R2 = 0.742) and robustness in predicting BCF values for PFASs. Application of the model to a comprehensive PFAS database identified 2.45% of chemicals as bioaccumulative, highlighting the need for regulatory attention. Overall, this study provides critical insights into the bioconcentration risks associated with PFASs and offers a reliable framework for prioritizing regulatory actions for these emerging contaminants, addressing a pressing need for their effective environmental management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助科研通管家采纳,获得50
31秒前
从容芮应助科研通管家采纳,获得50
31秒前
从容芮应助科研通管家采纳,获得50
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
从容芮应助科研通管家采纳,获得50
31秒前
从容芮应助科研通管家采纳,获得50
31秒前
从容芮应助科研通管家采纳,获得50
32秒前
从容芮应助科研通管家采纳,获得50
32秒前
从容芮应助科研通管家采纳,获得50
32秒前
你的葳完成签到,获得积分10
46秒前
丘比特应助着急的冬瓜采纳,获得10
1分钟前
优美短靴完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
唠叨的无敌完成签到 ,获得积分10
1分钟前
WENXI丶完成签到,获得积分10
2分钟前
2分钟前
WENXI丶发布了新的文献求助20
2分钟前
SciGPT应助yuan采纳,获得30
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
从容芮应助科研通管家采纳,获得50
2分钟前
2分钟前
研友_nEWRJ8发布了新的文献求助10
2分钟前
研友_nEWRJ8完成签到,获得积分10
2分钟前
WENXI丶发布了新的文献求助20
3分钟前
3分钟前
兔图图发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
寒冷的如之完成签到 ,获得积分10
4分钟前
嘬痰猩猩完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
SNOWSUMMER发布了新的文献求助20
5分钟前
SNOWSUMMER完成签到,获得积分10
5分钟前
5分钟前
yuan发布了新的文献求助30
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199394
求助须知:如何正确求助?哪些是违规求助? 4379991
关于积分的说明 13638732
捐赠科研通 4236379
什么是DOI,文献DOI怎么找? 2324019
邀请新用户注册赠送积分活动 1322040
关于科研通互助平台的介绍 1273297