材料科学
阳极
电池(电)
锂(药物)
锂离子电池
超分子化学
离子
硅
纳米技术
化学工程
光电子学
有机化学
电极
分子
物理化学
功率(物理)
医学
化学
物理
量子力学
工程类
内分泌学
作者
Dejian Cheng,Fei Song,Yong Zeng,Denglin Qin,Zongbin Ma,Peitao Zheng,Guangzhao Zhang,Chao‐Yang Wang,Yong Qian
标识
DOI:10.1002/adfm.202507041
摘要
Abstract Designing intelligent binders with dynamic adaptability remains crucial yet challenging for mitigating the structural degradation of silicon‐based anodes in lithium‐ion batteries. Here, an innovative aqueous supramolecular binder is presented featuring robust covalent‐anhydride bridges and dynamic hydrogen‐bond networks, synergistically constructed through molecular engineering of poly(methyl vinylether maleic acid) (PEA) and polyvinyl alcohol (PVA). The activated anhydride moieties enable stable covalent bond reconfiguration while maintaining robust interfacial adhesion, complemented by energy‐dissipating hydrogen bonds that collectively accommodate severe volume fluctuation of silicone anodes. This dual dynamic network demonstrates remarkable self‐healing capability and stress redistribution characteristics, endowing the silicone anodes with exceptional mechanical integrity (peeling force of 10.87 N) and cycling stability (78.40% capacity retention after 150 cycles). Simultaneously, the optimized binder architecture facilitates efficient lithium‐ion transport, achieving high‐rate capability (1414 mAh g −1 at 2C). Practical validation using 2.5‐Ah pouch cells demonstrates over 93% capacity retention after 350 cycles at 1C, significantly outperforming conventional binder systems. This supramolecular engineering strategy establishes a universal platform for developing next‐generation sustainable electrodes, showcasing the potential of dynamically adaptive interfacial chemistry in advanced energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI