PreCM: The Padding-based Rotation Equivariant Convolution Mode for Semantic Segmentation

计算机科学 卷积(计算机科学) 衬垫 计算机视觉 旋转(数学) 分割 人工智能 模式(计算机接口) 计算机安全 人工神经网络 操作系统
作者
Xinyu Xu,Huazhen Liu,Tao Zhang,Huilin Xiong,Wenxian Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3558425
摘要

Semantic segmentation is an important branch of image processing and computer vision. With the popularity of deep learning, various convolutional neural networks have been proposed for pixel-level classification and segmentation tasks. In practical scenarios, however, imaging angles are often arbitrary, encompassing instances such as water body images from remote sensing and capillary and polyp images in the medical domain, where prior orientation information is typically unavailable to guide these networks to extract more effective features. In this case, learning features from objects with diverse orientation information poses a significant challenge, as the majority of CNN-based semantic segmentation networks lack rotation equivariance to resist the disturbance from orientation information. To address this challenge, this paper first constructs a universal convolutiongroup framework aimed at more fully utilizing orientation information and equipping the network with rotation equivariance. Subsequently, we mathematically design a padding-based rotation equivariant convolution mode (PreCM), which is not only applicable to multi-scale images and convolutional kernels but can also serve as a replacement component for various types of convolutions, such as dilated convolutions, transposed convolutions, and asymmetric convolution. To quantitatively assess the impact of image rotation in semantic segmentation tasks, we also propose a new evaluation metric, Rotation Difference (RD). The replacement experiments related to six existing semantic segmentation networks on three datasets (i.e., Satellite Images of Water Bodies, DRIVE, and Floodnet) show that, the average Intersection Over Union (IOU) of their PreCM-based versions respectively improve 6.91%, 10.63%, 4.53%, 5.93%, 7.48%, 8.33% compared to their original versions in terms of random angle rotation. And the average RD values are decreased by 3.58%, 4.56%, 3.47%, 3.66%, 3.47%, 3.43% respectively. The code can be download from https://github.com/XinyuXu414.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士芝士完成签到 ,获得积分10
刚刚
花开的声音1217完成签到,获得积分10
刚刚
HR112应助轩辕一笑采纳,获得10
1秒前
青青完成签到,获得积分10
1秒前
1秒前
2秒前
qu蛐完成签到 ,获得积分10
2秒前
Time完成签到,获得积分10
2秒前
拉萨小医生完成签到,获得积分10
2秒前
Evernss完成签到,获得积分10
2秒前
3秒前
文静身边充满小确幸完成签到 ,获得积分10
3秒前
小鱼完成签到,获得积分10
3秒前
zby发布了新的文献求助30
4秒前
4秒前
4秒前
Nextone发布了新的文献求助10
4秒前
jaslek发布了新的文献求助10
5秒前
小米不无奈关注了科研通微信公众号
5秒前
5秒前
djxdjt发布了新的文献求助10
6秒前
pluto发布了新的文献求助10
6秒前
小小葱发布了新的文献求助10
6秒前
宋振堃发布了新的文献求助10
6秒前
Potato完成签到,获得积分10
7秒前
人云亦云完成签到,获得积分10
7秒前
yy完成签到,获得积分10
7秒前
隐形的星月完成签到,获得积分10
7秒前
老年学术废物完成签到 ,获得积分10
7秒前
kxuehen完成签到,获得积分10
7秒前
Loooong应助JIE采纳,获得20
7秒前
8秒前
健忘的雨安完成签到,获得积分10
8秒前
pan完成签到,获得积分10
9秒前
gxudmy发布了新的文献求助10
9秒前
迅速冬天完成签到,获得积分10
9秒前
9秒前
颜云尔完成签到,获得积分10
9秒前
9秒前
机灵语雪完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489200
求助须知:如何正确求助?哪些是违规求助? 4587809
关于积分的说明 14416116
捐赠科研通 4519590
什么是DOI,文献DOI怎么找? 2476314
邀请新用户注册赠送积分活动 1461673
关于科研通互助平台的介绍 1434860