已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Lightweight Semantic- and Graph-Guided Network for Advanced Optical Remote Sensing Image Salient Object Detection

计算机科学 图形 突出 遥感 人工智能 计算机视觉 地质学 理论计算机科学
作者
Jie Liu,Jinpeng He,Huaixin Chen,Yang Ruoyu,Ying Huang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (5): 861-861
标识
DOI:10.3390/rs17050861
摘要

In recent years, numerous advanced lightweight models have been proposed for salient object detection (SOD) in optical remote sensing images (ORSI). However, most methods still face challenges such as performance limitations and imbalances between accuracy and computational cost. To address these issues, we propose SggNet, a novel semantic- and graph-guided lightweight network for ORSI-SOD. The SggNet adopts a classical encoder-decoder structure with MobileNet-V2 as the backbone, ensuring optimal parameter utilization. Furthermore, we design an Efficient Global Perception Module (EGPM) to capture global feature relationships and semantic cues through limited computational costs, enhancing the model’s ability to perceive salient objects in complex scenarios, and a Semantic-Guided Edge Awareness Module (SEAM) that leverages the semantic consistency of deep features to suppress background noise in shallow features, accurately predict object boundaries, and preserve the detailed shapes of salient objects. To further efficiently aggregate multi-level features and preserve the integrity and complexity of overall object shape, we introduce a Graph-Based Region Awareness Module (GRAM). This module incorporates non-local operations under graph convolution domain to deeply explore high-order relationships between adjacent layers, while utilizing depth-wise separable convolution blocks to significantly reduce computational cost. Extensive quantitative and qualitative experiments demonstrate that the proposed model achieves excellent performance with only 2.70 M parameters and 1.38 G FLOPs, while delivering an impressive inference speed of 108 FPS, striking a balance between efficiency and accuracy to meet practical application needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的野狼完成签到 ,获得积分10
2秒前
6秒前
涨芝士完成签到 ,获得积分10
8秒前
君君发布了新的文献求助10
9秒前
科研通AI2S应助白蓝采纳,获得10
11秒前
12秒前
13秒前
Candy2024完成签到 ,获得积分10
15秒前
买双球鞋发布了新的文献求助10
15秒前
17秒前
埃斯基馍发布了新的文献求助10
17秒前
17秒前
18秒前
27秒前
小蘑菇应助清风采纳,获得10
31秒前
31秒前
医学僧也想成为科主任完成签到,获得积分10
31秒前
魔力巴啦啦完成签到 ,获得积分10
31秒前
33秒前
xxxnnn发布了新的文献求助10
33秒前
自信的九娘完成签到,获得积分10
35秒前
lili发布了新的文献求助10
36秒前
埃斯基馍完成签到,获得积分10
37秒前
37秒前
888发布了新的文献求助10
38秒前
39秒前
xxxnnn完成签到,获得积分10
43秒前
北宅一枝花完成签到,获得积分20
43秒前
46秒前
46秒前
汉堡包应助888采纳,获得30
47秒前
大轩发布了新的文献求助10
49秒前
龙虾侠完成签到,获得积分10
51秒前
梓然发布了新的文献求助50
52秒前
zho应助hongping采纳,获得10
53秒前
54秒前
阮绿凝完成签到,获得积分10
56秒前
阮绿凝发布了新的文献求助20
58秒前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798236
求助须知:如何正确求助?哪些是违规求助? 3343666
关于积分的说明 10317296
捐赠科研通 3060451
什么是DOI,文献DOI怎么找? 1679529
邀请新用户注册赠送积分活动 806665
科研通“疑难数据库(出版商)”最低求助积分说明 763282