Artificial Intelligence in Asthma Health Literacy: A Comparative Analysis of ChatGPT versus Gemini

医学 哮喘 健康素养 读写能力 家庭医学 环境卫生 医疗保健 免疫学 经济 经济增长
作者
Simon Høj,Vibeke Backer,Charlotte Suppli Ulrik,Torben Sigsgaard,Howraman Meteran
出处
期刊:Journal of Asthma [Taylor & Francis]
卷期号:: 1-10
标识
DOI:10.1080/02770903.2025.2495729
摘要

Asthma is a complex and heterogeneous chronic disease affecting over 300 million individuals worldwide. Despite advances in pharmacotherapy, poor disease control remains a major challenge, necessitating innovative approaches to patient education and self-management. Artificial intelligence driven chatbots, such as ChatGPT and Gemini, have the potential to enhance asthma care by providing real-time, evidence-based information. As asthma management moves toward personalized medicine, AI could support individualized education and treatment guidance. However, concerns remain regarding the accuracy and reliability of AI-generated medical content. This study evaluated the accuracy of ChatGPT (version 4.0) and Gemini (version 1.2) in providing asthma-related health information using the Patient-completed Asthma Knowledge Questionnaire, a validated asthma literacy tool. A cross-sectional study was conducted in which both AI models answered 54 standardized asthma-related items. Responses were classified as correct or incorrect based on alignment with validated clinical knowledge. Accuracy was assessed using descriptive statistics, Cohen's kappa for inter-model agreement, and chi-square tests for comparative performance. ChatGPT achieved an accuracy of 96.3% (52/54 correct; 95% CI: 87.5%-99.0%), while Gemini scored 92.6% (50/54 correct; 95% CI: 82.5%-97.1%), with no statistically significant difference (p = 0.67). Cohen's kappa demonstrated near-perfect agreement for ChatGPT (κ = 0.91) and strong agreement for Gemini (κ = 0.82). ChatGPT and Gemini demonstrated high accuracy in delivering asthma-related health information, supporting their potential as adjunct tools for patient education. AI models could potentially play a role in personalized asthma management by providing tailored treatment guidance and improving patient engagement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yo鹿完成签到,获得积分10
1秒前
2秒前
仙女的小可爱完成签到 ,获得积分10
2秒前
2秒前
xxxx完成签到,获得积分10
3秒前
郑方形发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
5秒前
彭于晏应助清爽沛槐采纳,获得10
6秒前
缓慢谷云发布了新的文献求助10
6秒前
6秒前
6秒前
Rufina0720完成签到,获得积分10
7秒前
砰砰完成签到 ,获得积分10
7秒前
8秒前
punker发布了新的文献求助10
9秒前
王闯完成签到,获得积分10
10秒前
Hello应助霸王爱吃面采纳,获得10
10秒前
一个很好的插线板完成签到,获得积分10
11秒前
12秒前
无尘发布了新的文献求助10
12秒前
xxxx发布了新的文献求助20
14秒前
缓慢谷云完成签到,获得积分10
15秒前
16秒前
KD发布了新的文献求助10
16秒前
punker完成签到,获得积分10
16秒前
浮游应助An采纳,获得30
18秒前
19秒前
浮游应助圆锥香蕉采纳,获得30
19秒前
岁月静好完成签到,获得积分10
21秒前
math完成签到,获得积分10
22秒前
邓佳鑫Alan应助Je采纳,获得10
23秒前
24秒前
顾矜应助ambitiouslu采纳,获得10
24秒前
姜同心发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
李爱国应助小菜鸡采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5096328
求助须知:如何正确求助?哪些是违规求助? 4308990
关于积分的说明 13426101
捐赠科研通 4136081
什么是DOI,文献DOI怎么找? 2265889
邀请新用户注册赠送积分活动 1269182
关于科研通互助平台的介绍 1205344