Combining Self-training and Hybrid Architecture for Semi-supervised Abdominal Organ Segmentation

计算机科学 分割 推论 人工智能 一般化 图像分割 机器学习 模式识别(心理学) 数学分析 数学
作者
Wentao Liu,Weijin Xu,Songlin Yan,Lemeng Wang,Haoyuan Li,Huihua Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 281-292 被引量:4
标识
DOI:10.1007/978-3-031-23911-3_25
摘要

Abdominal organ segmentation has many important clinical applications, such as organ quantification, surgical planning, and disease diagnosis. However, manually annotating organs from CT scans is time-consuming and labor-intensive. Semi-supervised learning has shown the potential to alleviate this challenge by learning from a large set of unlabeled images and limited labeled samples. In this work, we follow the self-training strategy and employ a high-performance hybrid architecture (PHTrans) consisting of CNN and Swin Transformer for the teacher model to generate precise pseudo labels for unlabeled data. Afterward, we introduce them with labeled data together into a two-stage segmentation framework with lightweight PHTrans for training to improve the performance and generalization ability of the model while remaining efficient. Experiments on the validation set of FLARE2022 demonstrate that our method achieves excellent segmentation performance as well as fast and low-resource model inference. The average DSC and NSD are 0.8956 and 0.9316, respectively. Under our development environments, the average inference time is 18.62 s, the average maximum GPU memory is 1995.04 MB, and the area under the GPU memory-time curve and the average area under the CPU utilization-time curve are 23196.84 and 319.67. The code is available at https://github.com/lseventeen/FLARE22-TwoStagePHTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
lh完成签到,获得积分10
3秒前
3秒前
英姑应助存在采纳,获得10
4秒前
tttt发布了新的文献求助10
6秒前
6秒前
gemini0615发布了新的文献求助10
8秒前
sc发布了新的文献求助10
9秒前
yesiDo完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
如意2023发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助siji采纳,获得10
12秒前
13秒前
13秒前
胡萝卜发布了新的文献求助10
14秒前
没有昵称发布了新的文献求助10
15秒前
科研通AI5应助gemini0615采纳,获得30
15秒前
15秒前
17秒前
jinjun发布了新的文献求助10
17秒前
dd发布了新的文献求助10
18秒前
18秒前
科研通AI5应助常小敏采纳,获得10
19秒前
隐形曼青应助sc采纳,获得10
20秒前
21秒前
科研通AI5应助没有昵称采纳,获得10
21秒前
21秒前
深情安青应助存在采纳,获得10
23秒前
复成完成签到 ,获得积分10
25秒前
和谐的以寒完成签到,获得积分10
28秒前
28秒前
包容的若风完成签到 ,获得积分10
28秒前
YMM完成签到,获得积分10
29秒前
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784091
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240855
捐赠科研通 3044714
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800193
科研通“疑难数据库(出版商)”最低求助积分说明 759241