Heterogenous Iron Oxide Assemblages for Use in Catalytic Ozonation: Reactivity, Kinetics, and Reaction Mechanism

催化作用 煅烧 反应性(心理学) 化学 流出物 动力学 降水 氯化物 无机化学 氧化物 硫酸盐 化学工程 多相催化 环境工程 有机化学 环境科学 病理 工程类 气象学 物理 医学 替代医学 量子力学
作者
Xiangtong Kong,Shikha Garg,Mahshid Mortazavi,Jinxing Ma,T. David Waite
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (47): 18636-18646 被引量:18
标识
DOI:10.1021/acs.est.2c07319
摘要

Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠醉易应助我姓王采纳,获得20
刚刚
元谷雪发布了新的文献求助10
3秒前
勤劳的以蓝完成签到,获得积分10
6秒前
7秒前
小六完成签到,获得积分10
8秒前
koutianle完成签到 ,获得积分10
9秒前
9秒前
大模型应助Phi.Wang采纳,获得10
11秒前
JamesPei应助小羊睡饱了采纳,获得10
11秒前
落叶捎来讯息完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助Bressanone采纳,获得10
14秒前
时光完成签到,获得积分10
15秒前
呜啦啦啦完成签到,获得积分10
17秒前
18秒前
头头完成签到,获得积分10
19秒前
李新光完成签到 ,获得积分10
19秒前
乐乐应助Darren采纳,获得10
19秒前
21秒前
ding应助cure采纳,获得20
22秒前
小熊发布了新的文献求助10
22秒前
Luchy完成签到 ,获得积分10
24秒前
成就书雪完成签到,获得积分0
25秒前
Phi.Wang发布了新的文献求助10
26秒前
顺利毕业发布了新的文献求助10
26秒前
29秒前
元谷雪发布了新的文献求助10
30秒前
kento发布了新的文献求助30
33秒前
搜集达人应助安详芝麻采纳,获得10
35秒前
NN应助安静的睿渊采纳,获得10
35秒前
36秒前
39秒前
39秒前
ChenWei给ChenWei的求助进行了留言
40秒前
顺利毕业完成签到,获得积分20
41秒前
41秒前
云烟成雨完成签到,获得积分10
41秒前
所所应助羽王采纳,获得10
42秒前
Bressanone发布了新的文献求助10
43秒前
carat发布了新的文献求助30
43秒前
43秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307