A Spiro‐Configured Self‐Assembled Molecule as Hole Transport Material for Organic Solar Cells Featuring High‐Efficiency and Universality

材料科学 普遍性(动力系统) 分子 有机太阳能电池 有机分子 化学工程 纳米技术 化学物理 工程物理 有机化学 凝聚态物理 聚合物 复合材料 物理 工程类 化学
作者
Chuanlei Zhu,Tianyi Chen,Shitao Guan,Shuixing Li,Yiqing Zhang,Mengting Wang,Nannan Yao,Adiljan Wupur,Minmin Shi,Hanying Li,Hongzheng Chen
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202504541
摘要

Abstract Self‐assembled molecules (SAMs) have emerged as promising alternatives to conventional hole transport layers (HTLs) in organic solar cells (OSCs), owing to their ability to finely tune interfacial energetics and improve charge selectivity. In this work, a spiro‐configured SAM molecule, 4PA‐SAcF, designed as a high‐performance HTL is reported for OSCs. Compared to its non‐spiro analog 4PA‐DMAc, 4PA‐SAcF exhibits a larger dipole moment, deeper HOMO level, and enhanced electrical conductivity. More importantly, its spiro backbone facilitates stronger intermolecular interactions and ordered molecular packing, as confirmed by single‐crystal X‐ray diffraction. These features result in compact and uniform interfacial layers with reduced defect density and improved hole extraction. As a result, PM6:Y6‐based OSCs employing 4PA‐SAcF delivered a power conversion efficiency (PCE) of 19.52%, which is among the highest values reported for this material combination. Furthermore, 4PA‐SAcF demonstrates versatility as a HTL for improved photovoltaic performance across various non‐fullerene systems, with a PCE of 19.90% acquired in D18:L8‐BO system and 20.37% achieved in a quaternary system. These results confirm the broad applicability and high performance of 4PA‐SAcF as a versatile interfacial material. This study highlights the potential of spiro‐configured organic semiconductors as next‐generation SAM‐based HTLs and provides a rational molecular design strategy for advancing high‐efficiency OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
等待吐司完成签到,获得积分10
刚刚
刚刚
CodeCraft应助踏实芫采纳,获得10
刚刚
刚刚
赘婿应助萤火虫采纳,获得10
1秒前
传奇3应助研友_8DAv0L采纳,获得10
1秒前
allezallez完成签到,获得积分10
3秒前
3秒前
张张发布了新的文献求助10
3秒前
赘婿应助ncjdoi采纳,获得10
3秒前
tillson发布了新的文献求助10
4秒前
张子豪发布了新的文献求助10
4秒前
5秒前
第一军团没有秘密完成签到,获得积分10
5秒前
Dreamer发布了新的文献求助10
6秒前
dgdsnfds发布了新的文献求助10
8秒前
10秒前
10秒前
蟹蟹发布了新的文献求助10
10秒前
浮游应助不想说采纳,获得10
11秒前
顾矜应助负责流口水采纳,获得10
11秒前
历了浮沉完成签到 ,获得积分10
13秒前
13秒前
兜兜发布了新的文献求助10
13秒前
13秒前
吴彦祖应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
14秒前
yang应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得30
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
有趣的桃应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497419
求助须知:如何正确求助?哪些是违规求助? 4594913
关于积分的说明 14447079
捐赠科研通 4527566
什么是DOI,文献DOI怎么找? 2480940
邀请新用户注册赠送积分活动 1465311
关于科研通互助平台的介绍 1437920