Graph Embedded Contrastive Learning for Multi-View Clustering

计算机科学 聚类分析 图形 人工智能 理论计算机科学
作者
Haoqiang He,Jie Xu,Guoqiu Wen,Yazhou Ren,Na Zhao,Xiaofeng Zhu
标识
DOI:10.24963/ijcai.2025/594
摘要

Recently, numerous multi-view clustering (MVC) and multi-view graph clustering (MVGC) methods have been proposed. Despite significant progress, they still face two issues: I) MVC and MVGC are often developed independently for multi-view and multi-graph data. They have redundancy but lack a unified methodology to combine their strengths. II) Contrastive learning is usually adopted to explore the associations across multiple views. However, traditional contrastive losses ignore the neighbor relationship in multi-view scenarios and easily lead to false associations in sample pairs. To address these issues, we propose Graph Embedded Contrastive Learning for Multi-View Clustering. Concretely, we propose a process of view-specific pre-training with adaptive graph convolution to make our method compatible with both multi-view and multi-graph data, which aggregates the graph information into data and leverages autoencoders to learn view-specific representations. Furthermore, to explore the view-cross associations, we introduce the process of view-cross contrastive learning and clustering, where we propose the graph-guided contrastive learning that can generate global graph to mitigate the false association issue as well as the cluster-guided contrastive clustering for improving the model robustness. Finally, extensive experiments demonstrate that our method achieves superior performance on both MVC and MVGC tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不倦发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
英姑应助xwhhxxb采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
WangKaka发布了新的文献求助10
2秒前
豆豆发布了新的文献求助10
2秒前
bluesky发布了新的文献求助10
2秒前
FashionBoy应助爬楼的飞飞采纳,获得10
3秒前
着急的雪冥完成签到,获得积分10
3秒前
怕黑嘉懿完成签到,获得积分10
4秒前
4秒前
wwyy应助阿废采纳,获得10
5秒前
5秒前
摸俞发布了新的文献求助10
5秒前
liyudan发布了新的文献求助10
5秒前
5秒前
思源应助jy采纳,获得10
6秒前
星辰大海应助rivalsdd采纳,获得30
7秒前
wwyy应助无常采纳,获得10
7秒前
8秒前
8秒前
WWXWWX发布了新的文献求助10
9秒前
9秒前
10秒前
阿北发布了新的文献求助10
11秒前
光亮语梦完成签到 ,获得积分10
12秒前
小王发布了新的文献求助10
12秒前
桐桐应助动人的向松采纳,获得200
13秒前
罗罗罗发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
WWXWWX完成签到,获得积分10
14秒前
14秒前
风清扬应助净刑采纳,获得30
14秒前
14秒前
IMUtensor完成签到,获得积分20
16秒前
爆米花应助WWW采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703854
求助须知:如何正确求助?哪些是违规求助? 4071125
关于积分的说明 12588699
捐赠科研通 3771729
什么是DOI,文献DOI怎么找? 2083322
邀请新用户注册赠送积分活动 1110535
科研通“疑难数据库(出版商)”最低求助积分说明 988364