Rhenium‐Doping to Promote Structural Evolution of Metallic Iridium to Oxides on Platinum Nanowire Bundles for Acidic Oxygen Evolution

材料科学 析氧 阳极 电化学 催化作用 纳米线 电极 分解水 纳米技术 化学工程 兴奋剂 铂金 化学 光电子学 物理化学 光催化 生物化学 工程类
作者
Jiashun Liang,Jiamao Zheng,Dominik Wierzbicki,Shuo Liu,Guofeng Wang,Chaochao Dun,Gang Wu
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202512317
摘要

Abstract The current high Ir loading (∼2 mg Ir cm −2 ) in proton exchange membrane water electrolyzers (PEMWEs) severely hinders their applications for green hydrogen production. Reducing Ir loading while maintaining high performance and durability for the oxygen evolution reaction (OER) anode is critical for the Gigawatt‐scale deployment of PEMWEs. Herein, we report an ultra‐low Ir anode, consisting of Re‐doped Ir nanoparticles anchored on Pt nanowire networks, enabling rational catalyst design at the atomic scale and electrode structure engineering at the nanoscale. The unique doping of Re into Ir was explored as an effective strategy to promote the desirable conversion from metallic Ir to amorphous IrO x during the acidic OER, thus benefiting intrinsic activity and stability enhancements. Notably, the Pt nanowire bundles serve as a support to enhance electrical conductivity and provide a high‐surface‐area, robust, and interconnected electrode structure, significantly increasing Ir utilization and electron/mass transport at the device level. Three‐electrode electrochemical tests revealed that the developed Ir catalyst exhibits a 100% increase in electrochemical surface area (ECSA) and a 160% enhancement in intrinsic OER activity compared to commercial Ir black catalysts. The optimized Ir anode achieved a current density of 3.0 A cm −2 at 1.69 V (0.2 mg Ir cm −2 ) and 1.73 V (0.1 mg Ir cm −2 ) in membrane electrode assemblies (MEAs), exceeding the US DOE 2026 targets (0.5 mg PGM cm −2 at 1.8 V for 3.0 A cm −2 ). The corresponding MEAs also demonstrated compelling long‐term durability, as evidenced by a low voltage degradation rate of 26 µV h −1 over 1100 hours of operation and 0.8 µV cycle −1 during an accelerated stress test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杭飞莲完成签到,获得积分10
3秒前
Hyy发布了新的文献求助10
3秒前
5秒前
5秒前
breathless完成签到,获得积分10
7秒前
xiongdi521发布了新的文献求助10
7秒前
伍梦桃发布了新的文献求助30
10秒前
想个名字发布了新的文献求助30
11秒前
调皮万怨完成签到,获得积分10
11秒前
SZ完成签到,获得积分10
11秒前
11秒前
12秒前
15秒前
深情安青应助小小娜采纳,获得10
16秒前
16秒前
sxy发布了新的文献求助10
18秒前
SZ发布了新的文献求助10
20秒前
xiongdi521完成签到,获得积分10
22秒前
miao完成签到,获得积分10
23秒前
23秒前
24秒前
科研通AI5应助eijgnij采纳,获得10
25秒前
小小娜发布了新的文献求助10
27秒前
huluhuqi完成签到,获得积分10
27秒前
猪猪侠发布了新的文献求助10
29秒前
xixilulixiu完成签到 ,获得积分10
30秒前
充电宝应助文欣采纳,获得10
39秒前
小二郎应助糊涂的尔烟采纳,获得10
41秒前
Akim应助FIGMA采纳,获得10
49秒前
50秒前
51秒前
科里斯皮尔应助西瓜采纳,获得10
51秒前
乐乐应助科研通管家采纳,获得10
51秒前
FashionBoy应助科研通管家采纳,获得10
51秒前
可靠大神应助科研通管家采纳,获得30
51秒前
52秒前
52秒前
52秒前
思源应助科研通管家采纳,获得10
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147173
求助须知:如何正确求助?哪些是违规求助? 3683937
关于积分的说明 11639340
捐赠科研通 3377858
什么是DOI,文献DOI怎么找? 1853716
邀请新用户注册赠送积分活动 916219
科研通“疑难数据库(出版商)”最低求助积分说明 830238