材料科学
浸出(土壤学)
价(化学)
氧气
无机化学
空位缺陷
析氧
化学工程
电极
结晶学
物理化学
电化学
化学
有机化学
环境科学
土壤科学
工程类
土壤水分
作者
Xiaohui Guo,Maolin Zhang,Wenyang Wang,Zhenyu Xie,Lixin Lin,Pengwei Li,Guang Li,Zhuo Chen,Shuquin Bo
标识
DOI:10.1002/aenm.202502935
摘要
Abstract Electrochemical oxidation of 5‐hydroxymethylfurfural (HMF) using non‐precious transition metal catalysts presents a sustainable pathway for producing high‐value 2,5‐furandicarboxylic acid (FDCA). Manganese‐based materials hold promise for HMF oxidation reactions but suffer from low intrinsic conductivity and sluggish kinetics in the formation of high‐valence Mn active species. Herein, a multi‐scale engineering strategy to construct a 3D Ag‐Mn(OH) 2 ‐O V /nickel foam (NF) catalyst by synergistically integrating electrochemical activation‐induced MoO 4 2− leaching and Ag nanoparticle modification on a pre‐synthesized MnMoO 4 /NF is proposed. Spectroscopic characterizations reveal that this dual‐functional modification strategy collectively generates an Ag‐Mn(OH) 2 ‐O V /NF heterostructure enriched with oxygen vacancies (O V ), thereby facilitating the formation of high‐valent Mn 3+ active centers. Moreover, the synergistic interplay between O V and Ag nanoparticles not only enhances the adsorption of reactants and reaction intermediates but also optimizes interfacial charge transfer, consequently lowering the overall reaction energy barrier. These cooperative effects collectively drive the superior catalytic performance of the Ag‐Mn(OH) 2 ‐O V /NF. As a result, the Ag‐Mn(OH) 2 ‐O V /NF catalyst achieves 100% HMF conversion rate and 98.60% FDCA Faradaic efficiency (FE) at 1.40 V versus. RHE, with its FE significantly higher than those of catalysts Mn(OH) 2 ‐O V /NF (70.11%) and Ag/NF (62.02%), and the electrolysis time is approximately halved.
科研通智能强力驱动
Strongly Powered by AbleSci AI