Deep learning versus conventional methods for missing data imputation: A review and comparative study

计算机科学 插补(统计学) 缺少数据 稳健性(进化) 深度学习 人工智能 嵌入 样本量测定 推论 机器学习 数据挖掘 统计 数学 生物化学 化学 基因
作者
Yige Sun,Jing Li,Yifan Xu,Tingting Zhang,Xiaofeng Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120201-120201 被引量:74
标识
DOI:10.1016/j.eswa.2023.120201
摘要

Deep learning models have been recently proposed in the applications of missing data imputation. In this paper, we review the popular statistical, machine learning, and deep learning approaches, and discuss the advantages and disadvantages of these methods. We conduct a comprehensive numerical study to compare the performance of several widely-used imputation methods for incomplete tabular (structured) data. Specifically, we compare the deep learning methods: generative adversarial imputation networks (GAIN) with onehot encoding, GAIN with embedding, variational auto-encoder (VAE) with onehot encoding, and VAE with embedding versus two conventional methods: multiple imputation by chained equations (MICE) and missForest. Seven real benchmark datasets and three simulated datasets are considered, including various scenarios with different feature types under different levels of sample sizes. The missing data are generated based on different missing ratios and three kinds of missing mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Our experiments show that, for small or moderate sample sizes, the conventional methods establish better robustness and imputation performance than the deep learning methods. GAINs only perform well in the case of MCAR and often fail in the cases of MAR and MNAR. VAEs are easy to fall into mode collapse in all missing mechanisms. We conclude that the conventional methods, MICE and missForest, are preferable for practitioners to deal with missing data imputation for tabular data with a limited sample size (i.e., n<30,000) in real case analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ymyuan完成签到,获得积分20
刚刚
nihao完成签到,获得积分10
1秒前
Ybaci7完成签到,获得积分10
1秒前
半山完成签到,获得积分10
1秒前
orixero应助msy采纳,获得10
2秒前
2秒前
LITTLE被发布了新的文献求助10
3秒前
Xinxxx发布了新的文献求助10
3秒前
小甜恬发布了新的文献求助10
3秒前
余悸完成签到 ,获得积分10
3秒前
ymyuan发布了新的文献求助20
3秒前
欲目完成签到 ,获得积分10
4秒前
飞飞发布了新的文献求助10
4秒前
充电宝应助疗伤烧肉粽采纳,获得10
4秒前
liz完成签到 ,获得积分10
7秒前
天天快乐应助ormita采纳,获得10
7秒前
852应助生动的如花采纳,获得10
7秒前
子车茗应助醒醒采纳,获得30
8秒前
xixi关注了科研通微信公众号
8秒前
8秒前
yoowt完成签到,获得积分10
9秒前
抹茶麻薯发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
无歧完成签到,获得积分10
11秒前
12秒前
坦率夕阳完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
超级野狼完成签到,获得积分20
15秒前
学习猴发布了新的文献求助10
15秒前
16秒前
wu完成签到,获得积分10
16秒前
Clara凤发布了新的文献求助30
16秒前
平常的毛豆应助魔幻若血采纳,获得10
17秒前
finerain7发布了新的文献求助10
17秒前
wwl发布了新的文献求助20
17秒前
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393