已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DIC-Net: Upgrade the performance of traditional DIC with Hermite dataset and convolution neural network

卷积(计算机科学) 数字图像相关 计算机科学 人工神经网络 变形(气象学) 深度学习 试验装置 流离失所(心理学) 边界(拓扑) 斑点图案 算法 人工智能 地质学 数学 光学 数学分析 心理学 海洋学 物理 心理治疗师
作者
Yin Wang,Jiaqing Zhao
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:160: 107278-107278 被引量:32
标识
DOI:10.1016/j.optlaseng.2022.107278
摘要

Digital image correlation (DIC) is a non-contact optical method that tracks the speckle pattern on specimen surface to calculate the displacement and strain by image correlation algorithm. Although the traditional DIC method can conveniently measure surface deformation, it still has many limitations: (1) the accuracy of displacement and strain calculation needs to be improved in the case of high deformation gradient; (2) under match or over-match can hardly be avoided when the filters are used to reconstruct smooth displacement or strain field, and (3) boundary effect remains unresolved in computing the deformation near the boundary of region of interest or the discontinuous area (e.g. area near crack tip or crack face). Recently, the deep learning based DIC (Deep-DIC) has revealed its attractive ability in handling above issues in traditional DIC, and impressive results have been achieved. The mean value of the absolute error (MAE) on the test set has been optimized to 0.0361 pixels using existing Deep-DIC approaches, which are accompanied by a real-time measurement speed. The network structure and training dataset are two key factors for the deep learning method. However, the current working networks have been modified from other image tasks and cannot fully adapt to the demands of the DIC tasks, and the dataset they generated still has evident flaws, limiting the method's accuracy and generalization performance which is utilized to assess performance on samples outside the training set. In this paper, we firstly proposed a new Hermite dataset that is created by using the high-order Hermite element to take account more complex deformation, then a new network architecture designed for the DIC task has been developed to extract richer deformation features. A test set of 3216 examples containing six different modes of displacement is used to compare the performance of our network with others. The proposed DIC-Net-d achieves the lowest MAE in the test set. Meanwhile, in the Star5 image sets from DIC-Challenge, the proposed DIC-Net-d achieves a spatial resolution of 17.25 pixels and a noise level of 0.0136 which outperforms existing traditional and non-traditional methods. Finally, the strain network trained by our Hermite dataset is also successful in predicting the strain field of Star6 in the DIC challenge. The experiment results show the superiority of the proposed Hermite dataset and new network with respect to other Deep-DIC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮问安完成签到,获得积分10
刚刚
2秒前
赘婿应助好奇宝宝采纳,获得10
2秒前
3秒前
3秒前
suliang应助阔达的秀发采纳,获得10
7秒前
wdlc发布了新的文献求助10
8秒前
倩倩关注了科研通微信公众号
10秒前
12秒前
12秒前
罐装完成签到,获得积分10
13秒前
15秒前
幸运幸福完成签到,获得积分10
17秒前
动人的书雪完成签到,获得积分10
18秒前
天雨流芳发布了新的文献求助10
18秒前
搜集达人应助紧张的芷采纳,获得10
18秒前
好奇宝宝发布了新的文献求助10
19秒前
夏天的蜜雪冰城完成签到,获得积分10
19秒前
丘比特应助pattrick采纳,获得30
22秒前
25秒前
27秒前
aaa发布了新的文献求助10
29秒前
29秒前
ding应助矮小的猎豹采纳,获得10
30秒前
紧张的芷发布了新的文献求助10
34秒前
35秒前
坚强秀发关注了科研通微信公众号
36秒前
36秒前
37秒前
夏紊完成签到 ,获得积分10
37秒前
38秒前
SciGPT应助微笑面对世界采纳,获得10
39秒前
40秒前
40秒前
倩倩发布了新的文献求助10
41秒前
42秒前
顾紫山发布了新的文献求助10
42秒前
Rjy完成签到 ,获得积分10
43秒前
43秒前
wgm完成签到,获得积分10
44秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840587
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525349
捐赠科研通 3102300
什么是DOI,文献DOI怎么找? 1708729
邀请新用户注册赠送积分活动 822662
科研通“疑难数据库(出版商)”最低求助积分说明 773465