Weed detection in sesame fields using a YOLO model with an enhanced attention mechanism and feature fusion

机制(生物学) 特征(语言学) 杂草 人工智能 融合 传感器融合 模式识别(心理学) 计算机科学 计算机视觉 物理 生物 植物 语言学 量子力学 哲学
作者
Jiqing Chen,Huabin Wang,Hongdu Zhang,Tian Luo,Wei Depeng,Teng Long,Zhikui Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107412-107412 被引量:91
标识
DOI:10.1016/j.compag.2022.107412
摘要

• A detection model of sesame and weeds based on YOLOv4, YOLO-sesame, is proposed. • Using local importance pooling to add attention mechanism to SPP structure. • Use SE block to improve the logic module of local importance pooling. • The ASFF structure is integrated to solve the problem of missing detection. • Effectively improve the detection accuracy while maintaining a fast detection speed. Weeds have a significant impact on sesame throughout its early stages of development, thus they must be rigorously controlled. However, the shape of sesame seedlings and weeds are similar, and the size specifications are not defined, making reliable weed detection difficult. To achieve the goal of weed recognition, the majority of solutions now use a deep learning model to learn the weed image. Weed targets with big variances in size and specification are easy to overlook with the current deep learning algorithm. As a result, standard deep learning models have room for improvement when it comes to sesame and weed recognition rates. The YOLO-sesame model is proposed to improve the efficiency and accuracy of sesame weed identification. Based on the YOLOv4 model, an attention mechanism is introduced. Local importance pooling is added to the SPP layer, on which the SE module is used as a logical module. To address the issue of large differences in target size and specifications, an adaptive spatial feature fusion structure is included at the feature fusion level. The experimental results suggest that the YOLO-sesame model proposed in this study outperforms mainstream models such as Fast R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv4-tiny in terms of detection performance. Sesame crops and weeds received F1 scores of 0.91 and 0.92, respectively, while the mAP was 96.16%. The detecting frame rate was 36.8 per second. In conclusion, the YOLO-sesame model successfully meets the needs for accurate sesame weed detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffe逗发布了新的文献求助10
刚刚
大尾猫完成签到,获得积分10
1秒前
miaomiao发布了新的文献求助50
1秒前
Archer宇发布了新的文献求助10
1秒前
1秒前
小虫学长应助格林采纳,获得10
2秒前
852应助yuanyuan采纳,获得10
2秒前
周冬利完成签到,获得积分20
2秒前
2秒前
li完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助Ljc采纳,获得10
3秒前
赘婿应助Ljc采纳,获得10
3秒前
4秒前
4秒前
程锦完成签到,获得积分20
4秒前
4秒前
关双双发布了新的文献求助100
5秒前
领导范儿应助doudou采纳,获得10
5秒前
隐形曼青应助自觉葶采纳,获得10
5秒前
隐形白开水完成签到,获得积分10
5秒前
高山午言发布了新的文献求助20
6秒前
lion发布了新的文献求助10
6秒前
Pinocchior完成签到,获得积分10
6秒前
7秒前
科研通AI5应助研友_8yN60L采纳,获得10
7秒前
浪仔完成签到,获得积分10
7秒前
7秒前
庞涵发布了新的文献求助20
7秒前
hanzhipad应助HYH采纳,获得10
8秒前
程锦发布了新的文献求助10
8秒前
科研通AI5应助大尾猫采纳,获得10
8秒前
L_完成签到,获得积分10
8秒前
dxt发布了新的文献求助20
9秒前
9秒前
bing完成签到,获得积分10
9秒前
9秒前
vincent完成签到,获得积分20
10秒前
10秒前
ivytian发布了新的文献求助20
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838966
求助须知:如何正确求助?哪些是违规求助? 3381420
关于积分的说明 10518123
捐赠科研通 3100845
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821928
科研通“疑难数据库(出版商)”最低求助积分说明 773056