Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC)

人工蜂群算法 计算机科学 算法 人工智能 灵敏度(控制系统) 机器学习 工程类 电子工程
作者
Ahmet Karaman,İshak Paçal,Alper Baştürk,Bahriye Akay,Ufuk Nalbantoğlu,Seymanur Coskun,Ömür Şahin,Derviş Karaboğa
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:221: 119741-119741 被引量:55
标识
DOI:10.1016/j.eswa.2023.119741
摘要

Colorectal cancer (CRC) is one of the most common cancer types with a high mortality rate. Colonoscopy is considered the gold standard in CRC screening, it also provides immediate removal of polyps, which are the precursors of CRC, significantly reducing CRC mortality. Polyps can be overlooked due to many factors and can progress to a fatal stage. Increasing the detection rate of missed polyps can be a turning point for CRC. Therefore, many traditional computer-aided detection (CAD) systems have been proposed, but the desired efficiency could not be obtained due to real-time detection or the limited sensitivity and specificity of the systems. In this article, we present a deep learning-based approach unlike traditional systems. This approach is basically based on 5th version of you only look once (YOLOv5) object detection algorithm and artificial bee colony (ABC) optimization algorithm. While models belonging to the YOLOv5 algorithm are used for polyp detection, the ABC algorithm is used to improve the performance of the models. The ABC algorithm is positioned to find the optimal activation functions and hyper-parameters for the YOLOv5 algorithm. The proposed method was performed on the novel Showa University and Nagoya University polyp database (SUN) dataset and PICCOLO white-light and narrow-band imaging colonoscopic dataset (PICCOLO). Experimental studies showed that the ABC algorithm successfully optimizes the YOLOv5 algorithm and offers much higher accuracy than the original YOLOv5 algorithm. The proposed method is far ahead of the existing methods in the literature in terms of speed and accuracy, with high performance in real-time polyp detection. This study is the first proposed method for optimization of activation functions and hyper-parameters for object detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
孳孳为善6387关注了科研通微信公众号
3秒前
野草发布了新的文献求助10
3秒前
开朗依霜发布了新的文献求助10
5秒前
7秒前
Tintin发布了新的文献求助10
7秒前
7秒前
WZ发布了新的文献求助10
8秒前
水123发布了新的文献求助10
10秒前
Tanji发布了新的文献求助10
10秒前
jasmine完成签到,获得积分10
12秒前
channing完成签到,获得积分10
12秒前
13秒前
咦哈哈哈完成签到 ,获得积分10
13秒前
15秒前
深情安青应助mmol采纳,获得10
15秒前
15秒前
脑洞疼应助tleeny采纳,获得10
15秒前
17秒前
枵蕾完成签到,获得积分10
17秒前
diming应助开朗依霜采纳,获得30
18秒前
奋斗的珍完成签到,获得积分10
18秒前
小巧雪碧发布了新的文献求助10
18秒前
ckk完成签到,获得积分10
19秒前
wllllll发布了新的文献求助10
19秒前
19秒前
20秒前
星辰大海应助小橙子采纳,获得10
20秒前
jasmine发布了新的文献求助10
20秒前
夕立完成签到,获得积分10
21秒前
WZ完成签到,获得积分10
21秒前
康师傅冰红茶完成签到 ,获得积分10
21秒前
学术小天才完成签到 ,获得积分10
22秒前
asp应助mito采纳,获得10
22秒前
ckk发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
李爱国应助liang采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794917
求助须知:如何正确求助?哪些是违规求助? 3339846
关于积分的说明 10297717
捐赠科研通 3056457
什么是DOI,文献DOI怎么找? 1677034
邀请新用户注册赠送积分活动 805101
科研通“疑难数据库(出版商)”最低求助积分说明 762330