亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization and Performance Evaluation of a Foam Plugging Profile Control Well Selection System

加权 石油工程 工程类 石油生产 有限元法 油井 结构工程 医学 放射科
作者
Khwaja Naweed Seddiqi,Kazunori Abe,Hongda Hao,Zabihullah Mahdi,Huaizhu Liu,Jirui Hou
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (11): 10342-10354 被引量:11
标识
DOI:10.1021/acsomega.2c08002
摘要

Most of the oilfields are currently experiencing intermediate to late stages of oil recovery by waterflooding. Channels were created between the wells by water injection and its effect on the oil recovery is less. The use of water plugging profile control is required to control excessive water production from an oil reservoir. First, the well selection for profile control using the fuzzy evaluation method (FEM) and improvement by random forest (RF) classification model is investigated. To identify wells for profile control operation, a fuzzy model with four factors is established; then, a machine learning RF algorithm was applied to create the factor weight with high accuracy decision-making. The data source consists of 18 injection wells, with 70% of the well data being utilized for training and 30% for model testing. Following the fitting of the model, the new factor weight is determined and decisions are made. As a consequence, FEM selects 7 out of 18 wells for profile control, and by using the factor weight developed by RF, 4 out of 18 wells are chosen. Then, the profile control is conducted through a foam system proposed by laboratory experiments. A computer molding group numerical simulation model is created to profile the wells being selected by both methods, FEM and RF. The impact of foam system plugging on daily oil production, water cut, and cumulative oil production of both methods are contrasted. According to the study, the reservoir performed better when four wells were chosen by the weighting system developed by RF as opposed to seven wells that were chosen using the FEM model during the effective period. The weighting model developed by RF accurately increased the profile control wells' decision-making skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
我是老大应助碗_采纳,获得10
6秒前
7秒前
10秒前
李铃锐完成签到 ,获得积分20
11秒前
624794951发布了新的文献求助10
12秒前
14秒前
上官若男应助Orin采纳,获得10
16秒前
21秒前
Crystal完成签到 ,获得积分10
22秒前
谦让白玉完成签到 ,获得积分10
27秒前
英姑应助张传茁采纳,获得30
28秒前
chenzhuod完成签到,获得积分10
30秒前
32秒前
碗_完成签到,获得积分10
32秒前
情怀应助笑点低剑封采纳,获得10
36秒前
ZsJJkk发布了新的文献求助10
38秒前
123发布了新的文献求助10
49秒前
lok应助ZsJJkk采纳,获得10
51秒前
53秒前
54秒前
牛黄完成签到 ,获得积分10
55秒前
zcl发布了新的文献求助10
57秒前
ccchao发布了新的文献求助10
59秒前
英俊的铭应助123采纳,获得10
1分钟前
婼汐完成签到 ,获得积分10
1分钟前
Cookiee完成签到 ,获得积分10
1分钟前
乐乐侠完成签到 ,获得积分10
1分钟前
1分钟前
南星完成签到 ,获得积分10
1分钟前
1分钟前
Canon大炮发布了新的文献求助10
1分钟前
zcl完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
自由的松完成签到 ,获得积分10
1分钟前
1分钟前
为你钟情完成签到 ,获得积分10
1分钟前
ZsJJkk完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301742
求助须知:如何正确求助?哪些是违规求助? 4449232
关于积分的说明 13848006
捐赠科研通 4335250
什么是DOI,文献DOI怎么找? 2380243
邀请新用户注册赠送积分活动 1375213
关于科研通互助平台的介绍 1341252