亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Charge redistribution in FeOOH nanoarray by ecological oxygen-reduction deposition for boosting electrocatalytic water oxidation

过电位 微晶 材料科学 塔菲尔方程 金属 化学工程 无机化学 化学 电极 电化学 冶金 工程类 物理化学
作者
Yaotian Yan,Keke Huang,Jinghuang Lin,Taili Yang,Peijia Wang,Liang Qiao,Wei Cai,Xiaohang Zheng
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:330: 122595-122595 被引量:21
标识
DOI:10.1016/j.apcatb.2023.122595
摘要

The exploration for economic and ecological strategies to fulfill macro-synthesis of highly efficient nano-electrocatalysts has always been a key concern for electrocatalytic energy conversion field. Herein, a room-temperature oxygen-reduction deposition method was proposed to achieve the scaled-up preparation of Ni incorporated polycrystalline FeOOH (Ni-FeOOH) nanosheets on Fe metal. Due to the reduction potential difference between Fe metal and O2 in the atmosphere, the O2 reduction would thermodynamically occur in the designed Ni2+ liquid layer covered on Fe metal. Therefore, Ni-FeOOH nanosheets would be in-situ generated on the surface within a short cycle of 20 min. Furthermore, the Ni heteroatom induced the charge redistribution in FeOOH, where the average valence of both Fe and Ni cations was shifted to high states. As a result, the decreased Fermi level and increased electron acceptor significantly reduced the energy barrier of rate-determining step (by ∼1.4 eV). Finally, polycrystalline Ni-FeOOH shows a low overpotential of 239 mV at 10 mA/cm2, a low Tafel slope of 33 mV dec-1, and a dramatically increased TOF value (32.6 times higher than pristine sample), which even surpass some mainstream electrocatalysts consisting of noble-metal composition. This work provides an in-depth insight on Ni-Fe interaction mechanism, as well as a highly economic and ecological strategy to design and synthesize scaled-up FeOOH based electrocatalysts for water oxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助zbzb采纳,获得10
5秒前
6秒前
11秒前
熊猫小肿发布了新的文献求助10
15秒前
熊猫小肿完成签到,获得积分10
26秒前
30秒前
47秒前
zbzb发布了新的文献求助10
53秒前
58秒前
1分钟前
孙燕应助沐熙采纳,获得10
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
zbzb完成签到,获得积分10
1分钟前
matthewa完成签到,获得积分10
1分钟前
1分钟前
haralee完成签到 ,获得积分10
1分钟前
2分钟前
孙燕应助沐熙采纳,获得10
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
2分钟前
ygl0217完成签到,获得积分10
2分钟前
李健应助matthewa采纳,获得10
3分钟前
3分钟前
孙燕应助沐熙采纳,获得10
3分钟前
3分钟前
mingjiang发布了新的文献求助10
3分钟前
情怀应助mingjiang采纳,获得10
3分钟前
4分钟前
4分钟前
5分钟前
Owen应助hm采纳,获得10
5分钟前
momo完成签到,获得积分10
5分钟前
5分钟前
matthewa发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492559
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842