Integrative Scoring System for Survival Prediction in Patients With Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study

医学 鼻咽癌 阶段(地层学) 放化疗 比例危险模型 内科学 磁共振成像 回顾性队列研究 肿瘤科 无进展生存期 临床试验 放射科 总体生存率 放射治疗 生物 古生物学
作者
Bin Zhang,Chun Luo,Xiao Zhang,Jing Hou,Shuyi Liu,Mingyong Gao,Lu Zhang,Zhe Jin,Qiuying Chen,Xiaoping Yu,Shuixing Zhang
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号: (7) 被引量:2
标识
DOI:10.1200/cci.22.00015
摘要

PURPOSE Tumor stage is crucial for prognostic evaluation and therapeutic decisions in locally advanced nasopharyngeal carcinoma (NPC) but is imprecise. We aimed to propose a new prognostic system by integrating quantitative imaging features and clinical factors. MATERIALS AND METHODS This retrospective study included 1,319 patients with stage III-IVa NPC between April 1, 2010, and July 31, 2019, who underwent pretherapy magnetic resonance imaging (MRI) and received concurrent chemoradiotherapy with or without induction chemotherapy. The hand-crafted and deep-learned features were extracted from MRI for each patient. After feature selection, the clinical score, radiomic score, deep score, and integrative scores were constructed via Cox regression analysis. The scores were validated in two external cohorts. The predictive accuracy and discrimination were measured by the area under the curve (AUC) and risk group stratification. The end points were progression-free survival (PFS), overall survival (OS), and distant metastasis-free survival (DMFS). RESULTS Both radiomics and deep learning were complementary to clinical variables (age, T stage, and N stage; all P < .05). The clinical-deep score was superior or equivalent to clinical-radiomic score, whereas it was noninferior to clinical-radiomic-deep score (all P > .05). These findings were also verified in the evaluation of OS and DMFS. The clinical-deep score yielded an AUC of 0.713 (95% CI, 0.697 to 0.729) and 0.712 (95% CI, 0.693 to 0.731) in the two external validation cohorts for predicting PFS with good calibration. This scoring system could stratify patients into high- and low-risk groups with distinct survivals (all P < .05). CONCLUSION We established and validated a prognostic system integrating clinical data and deep learning to provide an individual prediction of survival for patients with locally advanced NPC, which might inform clinicians in treatment decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助杨一采纳,获得10
1秒前
2秒前
2秒前
dap完成签到,获得积分10
4秒前
单薄怜寒发布了新的文献求助10
4秒前
高高尔蓉完成签到,获得积分10
4秒前
5秒前
jc完成签到 ,获得积分10
5秒前
大个应助简单山水采纳,获得10
6秒前
Fonxi完成签到,获得积分20
6秒前
Tomma完成签到,获得积分10
6秒前
高高尔蓉发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
跳跃的不二完成签到 ,获得积分10
8秒前
比大家发布了新的文献求助10
9秒前
pluto应助发论文采纳,获得60
9秒前
12秒前
李健的小迷弟应助008采纳,获得10
12秒前
13秒前
FashionBoy应助活力的尔蓉采纳,获得10
13秒前
yogurtli发布了新的文献求助10
14秒前
15秒前
今后应助发论文采纳,获得10
18秒前
学术垃圾完成签到,获得积分10
19秒前
杨一发布了新的文献求助10
19秒前
22秒前
小白完成签到 ,获得积分10
24秒前
Zmy完成签到,获得积分10
25秒前
桐桐应助hys采纳,获得10
26秒前
研友_VZG7GZ应助顽皮的雪鸮采纳,获得10
27秒前
blacksmith0发布了新的文献求助10
27秒前
含蓄飞槐完成签到 ,获得积分10
28秒前
29秒前
tokomon关注了科研通微信公众号
30秒前
31秒前
小海完成签到,获得积分10
31秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778867
求助须知:如何正确求助?哪些是违规求助? 3324387
关于积分的说明 10218251
捐赠科研通 3039453
什么是DOI,文献DOI怎么找? 1668175
邀请新用户注册赠送积分活动 798554
科研通“疑难数据库(出版商)”最低求助积分说明 758440