已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning the language of life with AI

计算机科学 心理学 语言学 认知科学 自然语言处理 哲学
作者
Eric J. Topol
出处
期刊:Science [American Association for the Advancement of Science (AAAS)]
卷期号:387 (6733): eadv4414-eadv4414 被引量:16
标识
DOI:10.1126/science.adv4414
摘要

In 2021, a year before ChatGPT took the world by storm amid the excitement about generative artificial intelligence (AI), AlphaFold 2 cracked the 50-year-old protein-folding problem, predicting three-dimensional (3D) structures for more than 200 million proteins from their amino acid sequences. This accomplishment was a precursor to an unprecedented burgeoning of large language models (LLMs) in the life sciences. That was just the beginning. In recent months, we have moved into a hyperaccelerated phase of new foundation models , pretrained on massive datasets, with the ability to perform a wide range of tasks that are helping us understand the structure, biology, evolution, and design of proteins, RNA, DNA, and ligands, as well as their biomolecular interactions. Unlike multimodal LLMs such as GPT-4, Gemini, and Claude, which process text, audio, and images, these large language of life models (LLLMs) are multiomic. That is to say, they are not only multimodal but pertain to different layers of molecular biology. For example, Evo , a foundation model trained on 2.7 million diverse phage and prokaryotic genomes (equivalent to about 300 billion DNA nucleotides), predicts the impact of variants in DNA, RNA, or proteins on structure and function, as well as how essential genes are to cell function, and can generate new DNA sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助HGBG2000采纳,获得10
3秒前
asdwe172009完成签到 ,获得积分10
6秒前
7秒前
旺仔发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
11秒前
14秒前
16秒前
20秒前
20秒前
21秒前
23秒前
24秒前
朱金雨完成签到 ,获得积分10
24秒前
25秒前
囡囡发布了新的文献求助10
27秒前
27秒前
mxh发布了新的文献求助10
29秒前
29秒前
31秒前
CodeCraft应助瘦瘦大白采纳,获得10
32秒前
Ykaor完成签到 ,获得积分10
32秒前
33秒前
34秒前
34秒前
汉堡包应助伶俐的高烽采纳,获得10
35秒前
守护星星发布了新的文献求助10
37秒前
37秒前
天天快乐应助sci一点就通采纳,获得10
38秒前
39秒前
贪玩梦山发布了新的文献求助10
40秒前
42秒前
守护星星完成签到,获得积分10
44秒前
欢呼宛秋完成签到,获得积分10
45秒前
211JZH完成签到 ,获得积分10
45秒前
完美世界应助mxh采纳,获得10
46秒前
大龙完成签到 ,获得积分10
46秒前
月子淇应助霸气的金鱼采纳,获得10
48秒前
48秒前
1123完成签到 ,获得积分10
49秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476217
求助须知:如何正确求助?哪些是违规求助? 4577883
关于积分的说明 14363077
捐赠科研通 4505789
什么是DOI,文献DOI怎么找? 2468870
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126