A deep‐learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor

主旨 伊马替尼 医学 酪氨酸激酶抑制剂 间质瘤 PDGFRA公司 H&E染色 组织学 深度测序 内科学 甲磺酸伊马替尼 酪氨酸激酶 肿瘤科 病态的 病理 间质细胞 癌症 免疫组织化学 生物 基因 基因组 受体 生物化学 髓系白血病
作者
Xue Kong,Jun Shi,Dongdong Sun,Lanqing Cheng,Can Wu,Zhiguo Jiang,Yushan Zheng,Wei Wang,Haibo Wu
标识
DOI:10.1002/path.6399
摘要

Abstract Over 90% of gastrointestinal stromal tumors (GISTs) harbor mutations in KIT or PDGFRA that can predict response to tyrosine kinase inhibitor (TKI) therapies, as recommended by NCCN (National Comprehensive Cancer Network) guidelines. However, gene sequencing for mutation testing is expensive and time‐consuming and is susceptible to a variety of preanalytical factors. To overcome the challenges associated with genetic screening by sequencing, in the current study we developed an artificial intelligence‐based deep‐learning (DL) model that uses convolutional neural networks (CNN) to analyze digitized hematoxylin and eosin staining in tumor histological sections to predict potential response to imatinib or avapritinib treatment in GIST patients. Assessment with an independent testing set showed that our DL model could predict imatinib sensitivity with an area under the curve (AUC) of 0.902 in case‐wise analysis and 0.807 in slide‐wise analysis. Case‐level AUCs for predicting imatinib‐dose‐adjustment cases, avapritinib‐sensitive cases, and wildtype GISTs were 0.920, 0.958, and 0.776, respectively, while slide‐level AUCs for these respective groups were 0.714, 0.922, and 0.886, respectively. Our model showed comparable or better prediction of actual response to TKI than sequencing‐based screening (accuracy 0.9286 versus 0.8929; DL model versus sequencing), while predictions of nonresponse to imatinib/avapritinib showed markedly higher accuracy than sequencing (0.7143 versus 0.4286). These results demonstrate the potential of a DL model to improve predictions of treatment response to TKI therapy from histology in GIST patients. © 2025 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sui完成签到,获得积分10
2秒前
ding应助新一采纳,获得10
2秒前
好好发布了新的文献求助10
3秒前
失眠的数据线完成签到,获得积分10
4秒前
tong应助朴素蜡烛采纳,获得10
4秒前
liangxiuting完成签到,获得积分10
7秒前
zoobijmy发布了新的文献求助10
7秒前
大个应助yangfeidong采纳,获得10
9秒前
yyx238666发布了新的文献求助10
10秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
MXene应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
乐观小之应助科研通管家采纳,获得20
13秒前
13秒前
一生总发布了新的文献求助10
14秒前
17秒前
18秒前
图图完成签到 ,获得积分10
18秒前
肥醒驳回了wanci应助
19秒前
19秒前
Bambookiller发布了新的文献求助10
20秒前
bin8发布了新的文献求助10
21秒前
yangfeidong发布了新的文献求助10
21秒前
SYLH应助上下采纳,获得10
22秒前
大方嵩完成签到,获得积分10
22秒前
木杉关注了科研通微信公众号
23秒前
24秒前
晨曦完成签到 ,获得积分10
24秒前
wy发布了新的文献求助10
25秒前
DOZ完成签到,获得积分10
25秒前
单纯的牛排完成签到,获得积分20
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945612
求助须知:如何正确求助?哪些是违规求助? 3490323
关于积分的说明 11056077
捐赠科研通 3221284
什么是DOI,文献DOI怎么找? 1780511
邀请新用户注册赠送积分活动 865573
科研通“疑难数据库(出版商)”最低求助积分说明 799904