A Gaussian process approach for rapid evaluation of skin tension

材料科学 张力(地质) 过程(计算) 高斯过程 高斯分布 生物医学工程 复合材料 机械工程 计算机科学 极限抗拉强度 工程类 物理 量子力学 操作系统
作者
Matt Nagle,Hannah Conroy Broderick,Christelle Vedel,Michel Destrade,Michael Fop,Aisling Ní Annaidh
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:182: 54-66 被引量:3
标识
DOI:10.1016/j.actbio.2024.05.025
摘要

Skin tension plays a pivotal role in clinical settings, it affects scarring, wound healing and skin necrosis. Despite its importance, there is no widely accepted method for assessing in vivo skin tension or its natural pre-stretch. This study aims to utilise modern machine learning (ML) methods to develop a model that uses non-invasive measurements of surface wave speed to predict clinically useful skin properties such as stress and natural pre-stretch. A large dataset consisting of simulated wave propagation experiments was created using a simplified two-dimensional finite element (FE) model. Using this dataset, a sensitivity analysis was performed, highlighting the effect of the material parameters and material model on the Rayleigh and supersonic shear wave speeds. Then, a Gaussian process regression model was trained to solve the ill-posed inverse problem of predicting stress and pre-stretch of skin using measurements of surface wave speed. This model had good predictive performance (R2 = 0.9570) and it was possible to interpolate simplified parametric equations to calculate the stress and pre-stretch. To demonstrate that wave speed measurements could be obtained cheaply and easily, a simple experiment was devised to obtain wave speed measurements from synthetic skin at different values of pre-stretch. These experimental wave speeds agree well with the FE simulations, and a model trained solely on the FE data provided accurate predictions of synthetic skin stiffness. Both the simulated and experimental results provide further evidence that elastic wave measurements coupled with ML models are a viable non-invasive method to determine in vivo skin tension. To prevent unfavourable patient outcomes from reconstructive surgery, it is necessary to determine relevant subject-specific skin properties. For example, during a skin graft, it is necessary to estimate the pre-stretch of the skin to account for shrinkage upon excision. Existing methods are invasive or rely on the experience of the clinician. Our work aims to present an innovative framework to non-invasively determine in vivo material properties using the speed of a surface wave travelling through the skin. Our findings have implications for the planning of surgical procedures and provides further motivation for the use of elastic wave measurements to determine in vivo material properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Strive发布了新的文献求助10
1秒前
4秒前
采桑子发布了新的文献求助10
6秒前
7秒前
9秒前
卡卡卡发布了新的文献求助10
9秒前
10秒前
康康发布了新的文献求助10
10秒前
10秒前
奋斗绿旋完成签到,获得积分10
12秒前
loin完成签到,获得积分10
13秒前
赘婿应助恩雁采纳,获得10
13秒前
wanci应助小狗雨伞采纳,获得10
13秒前
科研小白发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
NexusExplorer应助Strive采纳,获得10
16秒前
迷了路的猫完成签到,获得积分10
16秒前
ordin发布了新的文献求助10
17秒前
17秒前
18秒前
CAOHOU应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
孙燕应助科研通管家采纳,获得10
19秒前
孙燕应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
23应助科研通管家采纳,获得30
20秒前
8R60d8应助科研通管家采纳,获得50
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
大模型应助香蕉梨愁采纳,获得10
20秒前
tll应助科研通管家采纳,获得10
20秒前
Jasper应助香蕉梨愁采纳,获得10
20秒前
香蕉觅云应助香蕉梨愁采纳,获得10
20秒前
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117081
求助须知:如何正确求助?哪些是违规求助? 3655613
关于积分的说明 11575501
捐赠科研通 3358642
什么是DOI,文献DOI怎么找? 1845153
邀请新用户注册赠送积分活动 910636
科研通“疑难数据库(出版商)”最低求助积分说明 827000