TinyStereo: A Tiny Coarse-to-Fine Framework for Vision-Based Depth Estimation on Embedded GPUs

计算机科学 估计 计算机图形学(图像) 人工智能 并行计算 工程类 系统工程
作者
Qiong Chang,Xin Xu,Aolong Zha,Meng Joo Er,Yongqing Sun,Yun Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (8): 5196-5208
标识
DOI:10.1109/tsmc.2024.3395464
摘要

Stereo vision, a popular depth estimation technology in computing vision, finds wide-ranging applications in embedded systems, including robotics vision and autonomous driving. These applications demand both high accuracy and fast processing speeds. To address hardware limitations, most current embedded systems rely on nonlearning algorithms for fast matching, sacrificing accuracy. Some recent studies have explored using convolutional neural networks (CNNs) to improve matching accuracy, but the computational load of existing learning-based systems hampers real-world applicability. This article presents significant contributions: 1) a novel stereo matching framework that greatly enhances accuracy on real-time embedded platforms and 2) a two-pronged approach combining a nonlearning-based algorithm and a lightweight super-resolution residual neural network (sRRNet). The nonlearning-based algorithm yields a low-resolution disparity map, while the lightweight sRRNet generates a high-resolution disparity map. Experimental results on benchmark data demonstrate that the proposed method achieves a low matching error rate of 5.17% and a real-time processing speed of 51 fps using the embedded Jetson AGX GPU. The proposed method outperforms all existing real-time embedded systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婳嬨发布了新的文献求助10
刚刚
刚刚
彬不语完成签到,获得积分10
1秒前
xj发布了新的文献求助10
1秒前
Dicy发布了新的文献求助10
1秒前
cccc完成签到,获得积分20
1秒前
林先生发布了新的文献求助10
2秒前
田様应助songxia采纳,获得10
2秒前
rururu发布了新的文献求助10
2秒前
清脆如之发布了新的文献求助10
3秒前
飘逸楷瑞发布了新的文献求助10
4秒前
科研通AI5应助zhuozhuo采纳,获得10
4秒前
此时此刻发布了新的文献求助10
6秒前
CodeCraft应助牛牛采纳,获得10
7秒前
爱狗先森发布了新的文献求助10
8秒前
rururu完成签到,获得积分20
9秒前
11秒前
12秒前
13秒前
SMULJL完成签到,获得积分10
13秒前
13秒前
13秒前
CipherSage应助xj采纳,获得10
14秒前
研友_VZG7GZ应助liu采纳,获得10
15秒前
wgl完成签到,获得积分20
16秒前
17秒前
17秒前
CipherSage应助郭宝宝采纳,获得10
18秒前
清脆如之完成签到,获得积分10
18秒前
songxia发布了新的文献求助10
18秒前
19秒前
19秒前
QJN发布了新的文献求助10
21秒前
23秒前
56发布了新的文献求助10
23秒前
23秒前
24秒前
情怀应助醉酒笑红尘采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792160
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10280990
捐赠科研通 3053122
什么是DOI,文献DOI怎么找? 1675474
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761414