Non-covalent interactions in action: Advancing eutectogels for enhanced stability and performance

共价键 动作(物理) 理论(学习稳定性) 化学 纳米技术 材料科学 计算机科学 有机化学 物理 量子力学 机器学习
作者
Yujia Liang,Yuqian Tang,Wenqian Feng
出处
期刊:Polymer [Elsevier BV]
卷期号:307: 127262-127262 被引量:6
标识
DOI:10.1016/j.polymer.2024.127262
摘要

Gels stand out as favored soft matter materials across diverse industries, spanning from food processing to biomedicine. Deep eutectic solvents (DESs) emerge as environmentally friendly liquids, blending low-melting-point combinations with customizable chemical properties, thereby presenting safer alternatives to hazardous organic reagents. Crafted using DESs as solvents, eutectogels showcase superior mechanical qualities, an expanded electrochemical operating range, and a vast array of potential applications. Despite the remarkable enhancement of functional attributes facilitated by numerous non-covalent interactions through intermolecular forces and increased physical cross-linking within the three-dimensional networks of eutectogels, a critical gap persists in understanding the microscopic mechanisms that underlie non-covalent interaction-property correlations within them. To bridge this gap, this review categorizes and summarizes recent scientific investigations that explore non-covalent interactions within eutectogels, with the aim of highlighting the collaborative design and control of these interactions. We aspire for this review to ignite innovative design concepts and facilitate the development of revolutionary high-performance eutectogel materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓倩发布了新的文献求助10
刚刚
shunshun51213完成签到,获得积分10
1秒前
FashionBoy应助wjk采纳,获得10
2秒前
脑洞疼应助凝雁采纳,获得10
3秒前
4秒前
yousa完成签到,获得积分20
5秒前
他也蓝发布了新的文献求助10
7秒前
科研通AI5应助执着谷兰采纳,获得30
8秒前
9秒前
上官若男应助Ink采纳,获得10
10秒前
hauff完成签到,获得积分10
12秒前
13秒前
15秒前
16秒前
16秒前
Yiran发布了新的文献求助10
16秒前
17秒前
yang发布了新的文献求助10
17秒前
18秒前
生物kooqx发布了新的文献求助10
18秒前
Akim应助刻苦小鸭子采纳,获得10
20秒前
21秒前
hhhhhhl发布了新的文献求助10
21秒前
22秒前
万能图书馆应助littlesun采纳,获得10
22秒前
HF发布了新的文献求助10
22秒前
mmmz发布了新的文献求助10
22秒前
23秒前
求知完成签到,获得积分20
23秒前
23秒前
25秒前
25秒前
weixin112233发布了新的文献求助10
27秒前
愉快飞风发布了新的文献求助30
27秒前
Akim应助闪shan采纳,获得30
27秒前
吴宵完成签到,获得积分10
29秒前
31秒前
惟疏完成签到,获得积分10
31秒前
Ethanyoyo0917发布了新的文献求助10
33秒前
CipherSage应助科研通管家采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831756
求助须知:如何正确求助?哪些是违规求助? 3373889
关于积分的说明 10482182
捐赠科研通 3093826
什么是DOI,文献DOI怎么找? 1703068
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771375