清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-assisted nanosensor arrays: An efficiently high-throughput food detection analysis

纳米传感器 吞吐量 计算机科学 人工智能 机器学习 纳米技术 材料科学 电信 无线
作者
Yuechun Li,Wenrui Zhang,Zhaowen Cui,Longhua Shi,Yiwen Shang,Yanwei Ji,Jianlong Wang
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:149: 104564-104564 被引量:22
标识
DOI:10.1016/j.tifs.2024.104564
摘要

How to timely identify the food quality through a low-cost, easy operation, and high-throughput way is a milestone protects for food industry, especially in resource-limited area. Nanosensors by integrating with biomolecules (such as antibodies and aptamers) have emerged substitutes for the standard equipment analysis in the large-scale screening. However, the expensive cost of biomolecules, the "lock-key" combination unable to solve some problems (such as food freshness), and emerging food risks have strictly their development in food industry. Additionally, nanosensors without biomolecules are easily suffered from the non-specific interference, making the detection results unreliable. Therefore, some studies have concentrated on the sensor array by using nanomaterials as receptors to solving abovementioned problems, which is based on the multiple signal responses to generate the distinctive fingerprint for each analyte. This review comprehensively discussed the machine learning-assisted nanosensor arrays for the efficiently high-throughput food detection analysis, which mainly concludes candidates for nanosensor arrays, commonly used machine learning algorithms, and the application in food applications (such as foodborne hazards, food components, food freshness, food origin, and food adulteration). Additionally, we have proposed the challenges and prospects of machine learning-assisted nanosensor arrays in food applications to bridge the gap of current development bottleneck. Therefore, machine learning-assisted nanosensor arrays for the efficient high-throughput detection analysis in food industry are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PHD满完成签到,获得积分10
1分钟前
顺利问玉完成签到 ,获得积分10
1分钟前
dm11完成签到 ,获得积分10
1分钟前
暖暖完成签到,获得积分10
2分钟前
共享精神应助虚幻心锁采纳,获得10
2分钟前
考拉完成签到,获得积分10
3分钟前
ww完成签到,获得积分10
3分钟前
ilk666完成签到,获得积分10
3分钟前
3分钟前
月儿完成签到 ,获得积分10
3分钟前
虚幻心锁发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
xiaozou55完成签到 ,获得积分10
5分钟前
jiangjiang完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
7分钟前
Owen应助zzcc采纳,获得10
7分钟前
顺颂时祺发布了新的文献求助10
7分钟前
Cumin完成签到 ,获得积分10
7分钟前
FashionBoy应助踏实的12采纳,获得10
7分钟前
方白秋完成签到,获得积分10
8分钟前
Yafeiyy___完成签到,获得积分10
8分钟前
谭平完成签到 ,获得积分10
8分钟前
小小二完成签到,获得积分10
9分钟前
AiQi完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
大医仁心完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
细心帽子发布了新的文献求助10
9分钟前
UPUP0707发布了新的文献求助10
9分钟前
我是老大应助UPUP0707采纳,获得10
10分钟前
换乘点应助细心帽子采纳,获得10
10分钟前
完美世界应助学业繁忙采纳,获得30
11分钟前
斯文败类应助虚幻心锁采纳,获得10
11分钟前
11分钟前
11分钟前
虚幻心锁完成签到,获得积分10
11分钟前
虚幻心锁发布了新的文献求助10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4471426
求助须知:如何正确求助?哪些是违规求助? 3931210
关于积分的说明 12196455
捐赠科研通 3585389
什么是DOI,文献DOI怎么找? 1970868
邀请新用户注册赠送积分活动 1008808
科研通“疑难数据库(出版商)”最低求助积分说明 902686