Machine learning-assisted nanosensor arrays: An efficiently high-throughput food detection analysis

纳米传感器 吞吐量 计算机科学 人工智能 机器学习 纳米技术 材料科学 电信 无线
作者
Yuechun Li,Wenrui Zhang,Zhaowen Cui,Longhua Shi,Yiwen Shang,Yanwei Ji,Jianlong Wang
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:149: 104564-104564 被引量:33
标识
DOI:10.1016/j.tifs.2024.104564
摘要

How to timely identify the food quality through a low-cost, easy operation, and high-throughput way is a milestone protects for food industry, especially in resource-limited area. Nanosensors by integrating with biomolecules (such as antibodies and aptamers) have emerged substitutes for the standard equipment analysis in the large-scale screening. However, the expensive cost of biomolecules, the "lock-key" combination unable to solve some problems (such as food freshness), and emerging food risks have strictly their development in food industry. Additionally, nanosensors without biomolecules are easily suffered from the non-specific interference, making the detection results unreliable. Therefore, some studies have concentrated on the sensor array by using nanomaterials as receptors to solving abovementioned problems, which is based on the multiple signal responses to generate the distinctive fingerprint for each analyte. This review comprehensively discussed the machine learning-assisted nanosensor arrays for the efficiently high-throughput food detection analysis, which mainly concludes candidates for nanosensor arrays, commonly used machine learning algorithms, and the application in food applications (such as foodborne hazards, food components, food freshness, food origin, and food adulteration). Additionally, we have proposed the challenges and prospects of machine learning-assisted nanosensor arrays in food applications to bridge the gap of current development bottleneck. Therefore, machine learning-assisted nanosensor arrays for the efficient high-throughput detection analysis in food industry are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助小西瓜采纳,获得10
刚刚
刚刚
1秒前
鱼鱼发布了新的文献求助10
1秒前
1秒前
东尹完成签到,获得积分10
1秒前
勤奋以山发布了新的文献求助10
2秒前
2秒前
阔达的稀完成签到,获得积分20
2秒前
2秒前
棕榈发布了新的文献求助10
3秒前
酷波er应助Vvvnnnaa1采纳,获得10
3秒前
tbdxby完成签到,获得积分10
3秒前
自由珊完成签到 ,获得积分10
3秒前
qian完成签到 ,获得积分10
3秒前
5秒前
6秒前
疏水无纺布完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
tbdxby发布了新的文献求助20
7秒前
1101592875发布了新的文献求助10
8秒前
8秒前
阿沅发布了新的文献求助10
8秒前
传奇3应助Yff采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
缥缈浩然发布了新的文献求助10
9秒前
Marlo发布了新的文献求助10
9秒前
慕青应助伽俽采纳,获得10
9秒前
10秒前
orixero应助鱼鱼采纳,获得10
10秒前
汉堡包应助sci666采纳,获得10
10秒前
Lucky发布了新的文献求助10
11秒前
11秒前
贺知什么书完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654339
求助须知:如何正确求助?哪些是违规求助? 4793590
关于积分的说明 15068745
捐赠科研通 4812974
什么是DOI,文献DOI怎么找? 2574869
邀请新用户注册赠送积分活动 1530342
关于科研通互助平台的介绍 1489017