已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions

高光谱成像 遥感 噪音(视频) 环境科学 信噪比(成像) 计算机科学 人工智能 地质学 图像(数学) 电信
作者
Jianxin Jia,Xiaorou Zheng,Yueming Wang,Yuwei Chen,Mika Karjalainen,Shoubin Dong,Runuo Lu,Jianyu Wang,Juha Hyyppä
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:311: 114291-114291 被引量:4
标识
DOI:10.1016/j.rse.2024.114291
摘要

Hyperspectral images are increasingly being used in classification and identification. Data users prefer hyperspectral imagery with high spatial resolution, finer spectral resolution, and high signal-to-noise ratio (SNR). However, tradeoffs exist in these core parameters in imagery acquired by different hyperspectral sensor systems. Data users may find it difficult to utilize all the advantages of hyperspectral imagery. How to select hyperspectral data with optimal parameter configuration has been one of the essential issues for data users, which also affects the back-end applications. With advancements in computer science, various artificial intelligence algorithms from conventional machine learning to deep learning have been utilized for hyperspectral images classification and identification. Few researchers study the mechanism between the core parameters of hyperspectral imaging spectrometers and advanced artificial intelligence algorithms, which affects the application efficiency and accuracy. In this paper, we delved into the evolution of machine learning and deep learning models applied to imagery acquired by different hyperspectral sensor systems having different SNR, spectral, and spatial resolutions. Additionally, we also considered the tradeoffs among the core parameters of hyperspectral imagers. We used two conventional machine learning models, including the classification and regression tree (CART) and random forest (RF), two deep learning methods based on convolution neural network architectures—3D convolutional neural network (3D-CNN) and hamida, and two deep learning methods based on vision transformers architectures—transformer models vision transformer (VIT) and robust vision transformer (RVT), to compare the characteristics of different algorithms. In addition, five hyperspectral datasets with different species categories and scene distributions and aggregated datasets with different spatial resolutions, spectral resolutions, and SNRs were used to validate our study. The experimental results indicate that: (1) The overall accuracy (OA) using CART, RF, 3D-CNN, and VIT models decreased with coarser spectral resolution, but almost remained unchanged using the RVT classifier. The number of class and classification species affect the results. (2) The influence of spatial resolution on classification accuracy is related to the scene complexity, target size, and classification purpose. The coarser spatial resolution can achieve higher OA than the original spatial resolution for the uniform scene distribution. For the datasets with small objects and intersections of different species, OA first increased, plateaued, and then decreased with coarser spatial resolution. (3) The SNR has an obvious impact on OA for the CART and RF classifiers, and the impact decreased for deep learning models, especially for the VIT and RVT models, which were almost unaffected by SNR. Additionally, slight variations in experimental results were observed for datasets with different scene distributions and categories. Furthermore, we conducted a detailed analysis of the role of traditional machine learning and deep learning models in the experimental outcomes. The study can provide insights into understanding the relationship between the core parameters of hyperspectral imager and the artificial intelligence algorithms used for hyperspectral classification. It serves to bridge the knowledge gap between the front-end hyperspectral imager, mid-end model, and back-end applications, and further promote the development of hyperspectral imaging technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wax发布了新的文献求助10
5秒前
善学以致用应助栀璃鸳挽采纳,获得10
5秒前
坦率的丹烟完成签到 ,获得积分10
6秒前
风中的棒棒糖完成签到,获得积分10
7秒前
希望天下0贩的0应助an采纳,获得10
7秒前
科研通AI5应助谨慎的芹菜采纳,获得10
7秒前
大个应助tdtk采纳,获得10
12秒前
14秒前
黄滔发布了新的文献求助10
14秒前
15秒前
盯盯盯完成签到 ,获得积分10
18秒前
19秒前
jerry发布了新的文献求助10
22秒前
22秒前
25秒前
weddcf发布了新的文献求助10
26秒前
26秒前
酷波er应助EgbertW采纳,获得10
27秒前
踏实的怜菡完成签到 ,获得积分10
28秒前
李大了发布了新的文献求助10
28秒前
32秒前
lyy完成签到 ,获得积分10
33秒前
37秒前
39秒前
40秒前
41秒前
43秒前
nulinuli发布了新的文献求助10
44秒前
Hyg完成签到 ,获得积分10
45秒前
lily发布了新的文献求助10
46秒前
tdtk发布了新的文献求助10
46秒前
hahaha发布了新的文献求助10
47秒前
今后应助拥抱了一下采纳,获得10
48秒前
002完成签到,获得积分10
50秒前
吃点红糖馒头完成签到 ,获得积分10
52秒前
乌拉娜娜完成签到,获得积分10
53秒前
夏紊完成签到 ,获得积分10
54秒前
lily完成签到,获得积分10
55秒前
55秒前
沉静的时光完成签到 ,获得积分10
56秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788045
求助须知:如何正确求助?哪些是违规求助? 3333573
关于积分的说明 10262471
捐赠科研通 3049374
什么是DOI,文献DOI怎么找? 1673536
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477