已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neural-network-based multimode fiber imaging and position sensing under thermal perturbations

职位(财务) 人工神经网络 多模光纤 线性 计算机科学 人工智能 极化(电化学) 像素 非线性系统 光学 物理 斑点图案 计算机视觉 光纤 化学 财务 物理化学 量子力学 经济
作者
Tristan Kremp,Nicholas Bagley,Erin S. Lamb,Paul S. Westbrook,D. J. DiGiovanni
标识
DOI:10.1117/12.2648511
摘要

Multimode fibers (MMFs) have a very large number of propagating modes per unit area and therefore allow for imaging with a very large number of pixels relative to their diameter. This makes MMFs perfect candidates for ultrathin endoscopes in applications such as deep brain imaging. However, the accuracy of the input-output relation that is needed, e.g., for distal spot scanning without moving parts, requires a new calibration after the fiber position or temperature has been significantly altered. While neural networks have been used before to attempt to solve these challenges, we present an MMF-based imaging method that tolerates and classifies different fiber positions, using two single-layer fully-connected neural networks that only require the optical intensity without measuring the optical phase. One network learns the nonlinear relation between the input and output intensities and allows for image reconstruction in the presence of position changes, while the other network classifies that position change for different images. We show that our method is superior to memory-effect-based position sensing, both for small position changes where the relation between position change and output specklegram rotation angle is linear, as well as for larger position changes where this linearity and uniqueness break down. We also show that the position classification results are robust to temperature and polarization perturbations, and that our position classifier is able to effectively generalize. Likewise, we show that our imaging network also is robust to 30°C perturbations in temperature and 10° in polarization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rn完成签到 ,获得积分10
1秒前
2秒前
重要的一凡完成签到,获得积分10
2秒前
天天快乐应助zouzou采纳,获得30
3秒前
3秒前
吴衡完成签到 ,获得积分10
3秒前
chen发布了新的文献求助10
4秒前
玫瑰花完成签到,获得积分10
6秒前
吴小白发布了新的文献求助30
6秒前
脉动发布了新的文献求助10
7秒前
顾矜应助ycx采纳,获得30
8秒前
科研王完成签到 ,获得积分10
9秒前
11秒前
12秒前
温暖的鸿完成签到 ,获得积分10
13秒前
洪焕良发布了新的文献求助10
16秒前
18秒前
20秒前
星辰大海应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
aldehyde应助科研通管家采纳,获得10
21秒前
aldehyde应助科研通管家采纳,获得10
21秒前
aldehyde应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
chen完成签到,获得积分10
23秒前
科研通AI5应助典雅的黄豆采纳,获得10
23秒前
洪焕良完成签到,获得积分10
24秒前
小布发布了新的文献求助10
24秒前
bbpp完成签到,获得积分10
25秒前
qyn1234566发布了新的文献求助10
26秒前
30秒前
孙燕应助吴小白采纳,获得10
31秒前
swimming完成签到 ,获得积分10
31秒前
qyn1234566完成签到,获得积分10
34秒前
深情蚂蚁发布了新的文献求助100
37秒前
雪白砖家完成签到,获得积分10
38秒前
zzz完成签到 ,获得积分10
39秒前
文武完成签到 ,获得积分10
45秒前
49秒前
darkpigx完成签到,获得积分10
50秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492040
捐赠科研通 3095695
什么是DOI,文献DOI怎么找? 1704641
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792