材料科学
断裂(地质)
复合材料
软机器人
纳米技术
计算机科学
人工智能
机器人
作者
Baibin Yang,Caihong Wang,Ruihan Xiang,Qiang Zhao,Yong Wu,Shuai Tan
标识
DOI:10.1002/advs.202302342
摘要
Design of hydrogels with superior flexible deformability, anti-fracture toughness, and reliable environment adaption is fundamentally and practically important for diverse hydrogel-based flexible devices. However, these features can hardly be compatible even in elaborately designed hydrogels. Herein soft hydrogel networks with superior anti-fracture and deformability are proposed, which show good adaption to extremely harsh saline or alkaline environments. The hydrogel network is one-step constructed via hydrophobic homogenous cross-linking of poly (sodium acrylate), which is expected to provide hydrophobic associations and homogeneous cross-linking for energy dissipation. The obtained hydrogels are quite soft and deformable (tensile modulus: ≈20 kPa, stretchability: 3700%), but show excellent anti-fracture toughness (10.6 kJ m-2 ). The energy dissipation mechanism can be further intensified under saline or alkaline environments. The mechanical performance of the hydrophobic cross-linking topology is inspired rather than weakened by extremely saline or alkaline environments (stretchability: 3900% and 5100%, toughness: 16.1 and 17.1 kJ m-2 under saturated NaCl and 6 mol L-1 NaOH environments, respectively). The hydrogel network also shows good performance in reversible deformations, ion conductivity, sensing strain, monitoring human motions, and freezing resistance under high-saline environments. The hydrogel network show unique mechanical performance and robust environment adaption, which is quite promising for diverse applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI