作者
Li’an Jiang,Song Tian,Yuhui Xie,Xue Lv,Shulin Sun
摘要
Traditional hydrogels with a single-crosslinked network structure suffer from poor stretchability, low sensitivity, and easy contamination, which seriously affect their practical application in the strain sensor field. To overcome these shortcomings, herein, a multiphysical crosslinking strategy (ionic crosslinking and hydrogen bonding) was designed to prepare a hydrogel strain sensor based on chitosan quaternary ammonium salt (HACC)-modified P(AM-co-AA) (acrylamide-co-acrylic acid copolymer) hydrogels. The ionic crosslinking for the double-network P(AM-co-AA)/HACC hydrogels was achieved by an immersion method with Fe3+ as crosslinking sites, which crosslinked with the amino group (−NH2) on HACC and the carboxyl group (−COOH) on P(AM-co-AA) and enabled the hydrogels to recover and reorganize rapidly, resulting in a hydrogel-based strain sensor with excellent tensile stress (3 MPa), elongation (1390%), elastic modulus (0.42 MPa), and toughness (25 MJ/m3). In addition, the prepared hydrogel exhibited high electrical conductivity (21.6 mS/cm) and sensitivity (GF = 5.02 at 0–20% strain, GF = 6.84 at 20–100% strain, and GF = 10.27 at 100–480% strain). Furthermore, the introduction of HACC endowed the hydrogel with excellent antibacterial properties (up to 99.5%) and excellent antibacterial activity against bacteria of three forms, bacilli, cocci, and spores. The flexible, conductive, and antibacterial hydrogel can be applied as a strain sensor for real-time detection of human motions such as joint movement, speech, and respiration, which exhibits a promising application prospect in wearable devices, soft robotic systems, and other fields.