Two Birds With One Stone: Knowledge-Embedded Temporal Convolutional Transformer for Depression Detection and Emotion Recognition

计算机科学 情绪识别 人工智能 变压器 认知心理学 模式识别(心理学) 语音识别 心理学 工程类 电气工程 电压
作者
Wenbo Zheng,Lan Yan,Fei‐Yue Wang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2595-2613 被引量:44
标识
DOI:10.1109/taffc.2023.3282704
摘要

Depression is a critical problem in modern society that affects an estimated 350 million people worldwide, causing feelings of sadness and a lack of interest and pleasure. Emotional disorders are gaining interest and are closely entwined with depression, because one contributes to an understanding of the other. Despite the achievements in the two separate tasks of emotion recognition and depression detection, there has not been much prior effort to build a unified model that can connect these two tasks with different modalities, including multimedia (text, audio, and video) and unobtrusive physiological signals (e.g., electroencephalography). We propose a novel temporal convolutional transformer with knowledge embedding to address the joint task of depression detection and emotion recognition. This approach not only learns multimodal embeddings across domains via the temporal convolutional transformer but also exploits special-domain knowledge from medical knowledge graphs to improve the performance of detection and recognition. It is essential that the features learned by our method can be perceived as a priori and are suitable for increasing the performance of other related tasks. Our method illustrates the case of "two birds with one stone" in the sense that two or more tasks can be efficiently handled with our unique model, which captures effective features. Experimental results on ten real-world datasets show that the proposed approach significantly outperforms other state-of-the-art approaches. On the other hand, experiments in which our methodology is applied to other reasoning tasks show that our approach effectively supports model reasoning related to emotion and improves its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daifengwei214发布了新的文献求助10
刚刚
1秒前
coollz发布了新的文献求助10
2秒前
善学以致用应助蓝天0812采纳,获得10
2秒前
羞涩的桐完成签到,获得积分10
2秒前
2秒前
HY完成签到 ,获得积分10
3秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
英俊的铭应助轻松的贞采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
少年应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
少年应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得30
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
7秒前
李健应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
kk发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
Momomo应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712099
求助须知:如何正确求助?哪些是违规求助? 5208196
关于积分的说明 15266490
捐赠科研通 4864162
什么是DOI,文献DOI怎么找? 2611297
邀请新用户注册赠送积分活动 1561530
关于科研通互助平台的介绍 1518858