脑电图
人工智能
数据集
标杆管理
集合(抽象数据类型)
计算机科学
卷积神经网络
神经学
机器学习
心理学
神经科学
业务
营销
程序设计语言
作者
Jesper Tveit,Harald Aurlien,Sergey M. Plis,Vince D. Calhoun,William O. Tatum,Donald L. Schomer,Vibeke Arntsen,F. M. Cox,Firas Fahoum,William Gallentine,Elena Gardella,Cecil D. Hahn,Aatif M. Husain,Sudha Kilaru Kessler,Mustafa Aykut Kural,Fábio A. Nascimento,Hatice Tankişi,Line Bédos Ulvin,Richard Wennberg,Sándor Beniczky
出处
期刊:JAMA Neurology
[American Medical Association]
日期:2023-06-20
卷期号:80 (8): 805-805
被引量:106
标识
DOI:10.1001/jamaneurol.2023.1645
摘要
Electroencephalograms (EEGs) are a fundamental evaluation in neurology but require special expertise unavailable in many regions of the world. Artificial intelligence (AI) has a potential for addressing these unmet needs. Previous AI models address only limited aspects of EEG interpretation such as distinguishing abnormal from normal or identifying epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based on AI suitable for clinical practice is needed.
科研通智能强力驱动
Strongly Powered by AbleSci AI