Direct yield prediction from SEM images

计算机科学 过程(计算) 还原(数学) 直线(几何图形) 灵敏度(控制系统) 薄脆饼 过程控制 GSM演进的增强数据速率 电子工程 材料科学 人工智能 数学 工程类 光电子学 几何学 操作系统
作者
Lilach Choona,Jasmine S. Linshiz,Shaul Pres,Boris Levant,Noam Tal,Gaetano Santoro,S. Baudot,A. Opdebeeck,Jason M. Reifsnider,Senthil Vadakupudhu Palayam,Lorusso Gian,Jérôme Mitard,Shay Yogev
标识
DOI:10.1117/12.2658294
摘要

In line Electrical measurement (E-Test) are the most effective predictors for EOL yield control. As technology progress with scaling, the number. of process layers increases, allowing in-line electrical measurements only after several months since lot started process in-line. As a result, each E-Test monitor controls longer and more challenging process loop. Most of the in-line pattern control that impact electrical performance measured separately for each pattern polygon and material properties. In addition, Edge Placement Error (EPE) methodology, allows combination of multiple dimensions like CD, Overlay and LER measurements to better predict yield impact. Technology shrinkage, resulting that transistor electrical performance, defined by more geomaterial parameters as well as material compositions and defectivity. In this paper we demonstrate a direct prediction from high resolution Scanning Electron Microscope (SEM) images to the first inline electrical measurement (M1) using Deep Learning (DL) techniques. The DL model provide early prediction of electrical performance, describing accurately Within Wafer (WIW) variation weeks earlier than the actual electrical measurements. Multiple layers prediction may indicate suspected process loop that modulate majority of variation and save time to solution. It can be achieved since the DL model utilizes complementary information exist on the full e-Beam image like materials and defectivity. The following results will indicate that accumulating information collected from several layers will improve prediction sensitivity and lead to even more accurate prediction capabilities. We assume that the effectiveness of the proposed prediction method will increase with process complexity, since the modulation of the existing yield predictors is losing sensitivity as design rule shrinks. In addition, since fabrication phase gets longer, the time to actual electrical measurements increase, making an early, nondestructive, and accurate prediction for electrical performance more and more valuable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流氓兔完成签到,获得积分10
刚刚
wlx完成签到 ,获得积分10
1秒前
孑然完成签到 ,获得积分10
1秒前
哭泣乌完成签到,获得积分10
1秒前
Moriarty发布了新的文献求助10
1秒前
淡定幼荷发布了新的文献求助10
2秒前
scott_zip完成签到 ,获得积分10
2秒前
清辉夜凝完成签到 ,获得积分10
2秒前
左右兮完成签到,获得积分10
2秒前
细嗅蔷薇完成签到,获得积分10
2秒前
答辩科学家完成签到,获得积分10
3秒前
4秒前
陈打铁完成签到,获得积分10
4秒前
好运气运气好完成签到,获得积分10
4秒前
XYY完成签到,获得积分10
5秒前
学术裁缝完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
zw发布了新的文献求助10
5秒前
莫元枫发布了新的文献求助10
5秒前
旺仔完成签到 ,获得积分10
6秒前
海边的叶子完成签到,获得积分10
6秒前
瓜6完成签到 ,获得积分10
6秒前
Sara完成签到,获得积分10
6秒前
6秒前
bc完成签到,获得积分10
6秒前
科研通AI5应助目光所致采纳,获得10
6秒前
甜甜的凝安完成签到,获得积分10
7秒前
姜苏婷完成签到,获得积分10
7秒前
柚子完成签到,获得积分10
7秒前
7秒前
有风完成签到 ,获得积分10
8秒前
8秒前
Zhihu完成签到,获得积分10
8秒前
三只保全发布了新的文献求助10
8秒前
小黑不黑完成签到,获得积分10
8秒前
Sara发布了新的文献求助10
9秒前
淡定幼荷完成签到,获得积分10
9秒前
嘉嘉琦发布了新的文献求助10
9秒前
流浪瓦力完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067327
求助须知:如何正确求助?哪些是违规求助? 4289104
关于积分的说明 13362097
捐赠科研通 4108613
什么是DOI,文献DOI怎么找? 2249798
邀请新用户注册赠送积分活动 1255239
关于科研通互助平台的介绍 1187762