Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia

髓系白血病 发病机制 生物 白血病 癌症研究 生物信息学 髓样 医学 计算生物学 计算机科学 肿瘤科 免疫学
作者
Hassan Awada,Arda Durmaz,Carmelo Gurnari,Ashwin Kishtagari,Manja Meggendorfer,Cassandra M Kerr,Teodora Kuzmanovic,Jibran Durrani,Jacob Shreve,Yasunobu Nagata,Tomas Radivoyevitch,Anjali S. Advani,Farhad Ravandi,Hetty E. Carraway,Aziz Nazha,Claudia Haferlach,Yogen Saunthararajah,Jacob G. Scott,Valeria Visconte,Hagop M. Kantarjian,Tapan M. Kadia,Mikkael A. Sekeres,Torsten Haferlach,Jaroslaw P. Maciejewski
出处
期刊:Blood [Elsevier BV]
卷期号:138 (19): 1885-1895 被引量:9
标识
DOI:10.1182/blood.2020010603
摘要

Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical subdivision of primary/de novo AML and secondary AML has shown to variably correlate with genetic patterns. The combinatorial complexity and heterogeneity of AML genomic architecture may have thus far precluded genomic-based subclassification to identify distinct molecularly defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed using standard and machine learning methods to generate a novel AML molecular subclassification with biologic correlates corresponding to underlying pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy when attempting to use molecular patterns to predict traditional pathomorphologic AML classifications. We performed unsupervised analysis by applying the Bayesian latent class method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each cluster were extracted and resulted in 97% cross-validation accuracy when used for genomic subclassification. Subclasses of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We internally and externally validated our results and share an open-access molecular classification scheme for AML patients. Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for traditional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indicating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到 ,获得积分10
2秒前
安安完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
NINISO发布了新的文献求助20
6秒前
heheha完成签到,获得积分10
7秒前
Geist完成签到,获得积分10
11秒前
shihan1231完成签到,获得积分10
13秒前
脑洞疼应助过时的又槐采纳,获得10
13秒前
tianweidong123_完成签到,获得积分10
13秒前
13秒前
lige完成签到 ,获得积分10
14秒前
狂野的河马完成签到,获得积分10
14秒前
14秒前
勤奋的松鼠完成签到,获得积分10
15秒前
15秒前
16秒前
背后的鹭洋完成签到,获得积分10
16秒前
阳光he完成签到,获得积分10
17秒前
淡淡的发卡完成签到,获得积分10
17秒前
17秒前
18秒前
暗黑同学完成签到,获得积分10
18秒前
英俊绿海发布了新的文献求助10
18秒前
fancyking发布了新的文献求助10
19秒前
Rachel完成签到 ,获得积分10
19秒前
nenoaowu应助斯文无敌采纳,获得30
19秒前
任无施完成签到 ,获得积分10
21秒前
酷酷酷完成签到,获得积分10
21秒前
今后应助叉烧包采纳,获得10
22秒前
Meyako完成签到 ,获得积分10
22秒前
flj7038发布了新的文献求助10
22秒前
龙猫爱看书完成签到,获得积分10
22秒前
23秒前
nilou发布了新的文献求助10
23秒前
25秒前
25秒前
酷酷酷发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734