Spine-transformers: Vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D transformers

计算机科学 人工智能 分割 编码器 椎骨 计算机视觉 变压器 探测器 深度学习 模式识别(心理学) 工程类 生物 操作系统 电信 电气工程 古生物学 电压
作者
Rong Tao,Wenyong Liu,Guoyan Zheng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102258-102258 被引量:52
标识
DOI:10.1016/j.media.2021.102258
摘要

In this paper, we address the problem of fully automatic labeling and segmentation of 3D vertebrae in arbitrary Field-Of-View (FOV) CT images. We propose a deep learning-based two-stage solution to tackle these two problems. More specifically, in the first stage, the challenging vertebra labeling problem is solved via a novel transformers-based 3D object detector that views automatic detection of vertebrae in arbitrary FOV CT scans as a one-to-one set prediction problem. The main components of the new method, called Spine-Transformers, are a one-to-one set based global loss that forces unique predictions and a light-weighted 3D transformer architecture equipped with a skip connection and learnable positional embeddings for encoder and decoder, respectively. We additionally propose an inscribed sphere-based object detector to replace the regular box-based object detector for a better handling of volume orientation variations. Our method reasons about the relationships of different levels of vertebrae and the global volume context to directly infer all vertebrae in parallel. In the second stage, the segmentation of the identified vertebrae and the refinement of the detected centers are then done by training one single multi-task encoder-decoder network for all vertebrae as the network does not need to identify which vertebra it is working on. The two tasks share a common encoder path but with different decoder paths. Comprehensive experiments are conducted on two public datasets and one in-house dataset. The experimental results demonstrate the efficacy of the present approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助奶茶的后来采纳,获得10
刚刚
Yxy2021完成签到 ,获得积分10
1秒前
稳重老魏完成签到,获得积分20
1秒前
yl6649084发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得30
1秒前
hoijuon应助科研通管家采纳,获得10
2秒前
2秒前
阳光发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
英俊的铭应助loey采纳,获得10
2秒前
Kirito应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
云瑾应助科研通管家采纳,获得10
2秒前
3秒前
天真的凡霜完成签到,获得积分10
3秒前
laallaall应助科研通管家采纳,获得10
3秒前
云瑾应助科研通管家采纳,获得10
3秒前
凌晨幻舞发布了新的文献求助30
3秒前
彭于彦祖应助科研通管家采纳,获得20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
云瑾应助科研通管家采纳,获得10
3秒前
云瑾应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得100
4秒前
4秒前
云瑾应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得20
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
张文慧应助科研通管家采纳,获得10
5秒前
5秒前
tang应助科研通管家采纳,获得30
5秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876538
求助须知:如何正确求助?哪些是违规求助? 3419147
关于积分的说明 10712106
捐赠科研通 3143825
什么是DOI,文献DOI怎么找? 1734608
邀请新用户注册赠送积分活动 836908
科研通“疑难数据库(出版商)”最低求助积分说明 782878