已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI

无线电技术 列线图 胎盘 磁共振成像 医学 Lasso(编程语言) 人工智能 深度学习 计算机科学 产科 机器学习 怀孕 放射科 胎儿 肿瘤科 生物 万维网 遗传学
作者
Qian Shao,Rongrong Xuan,Yutao Wang,Jian Xu,Menglin Ouyang,Caoqian Yin,Wei Jin
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:18 (5): 6198-6215 被引量:16
标识
DOI:10.3934/mbe.2021310
摘要

The purpose of this study was to explore whether the Nomogram, which was constructed by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72 pregnant women with pathologically confirmed placenta invasion and 40 pregnant women with normal placenta. After 24 gestational weeks, all participants underwent magnetic resonance imaging. The uterus and placenta regions were segmented in magnetic resonance images on sagittal T2WI. Ninety-three radiomics features were extracted from the placenta region, and 128 deep features were extracted from the uterus region using a deep neural network. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter these 221 features and to form the combined signature. Then the combined signature (CS) and clinical factors were combined to construct a nomogram. The accuracy, sensitivity, specificity and AUC of the nomogram were compared with four machine learning methods. The model NDRC was trained on the dataset of 78 pregnant women in the training cohort. Finally, the model NDRC was compared with four machine learning methods on the independent validation cohort of 34 pregnant women. The results showed that the prediction accuracy, sensitivity, specificity and AUC of the NDRC model were 0.941, 0.952, 0.923 and 0.985 respectively, which outperforms the traditional machine learning methods which rely on radiomics features and deep learning features alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋完成签到 ,获得积分10
1秒前
yyy发布了新的文献求助10
1秒前
1秒前
orixero应助morena采纳,获得10
2秒前
3秒前
3秒前
滴滴答答完成签到 ,获得积分10
4秒前
yjihn发布了新的文献求助10
4秒前
真的不会发布了新的文献求助10
5秒前
5秒前
5秒前
Owen应助洋芋采纳,获得10
6秒前
7秒前
小六六六发布了新的文献求助10
9秒前
ぴいい发布了新的文献求助10
9秒前
hahahaha完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
hahahaha发布了新的文献求助10
13秒前
13秒前
张于小丸子完成签到,获得积分10
13秒前
he发布了新的文献求助10
17秒前
18秒前
小栗发布了新的文献求助10
18秒前
烟花应助彩色的盼秋采纳,获得10
19秒前
20秒前
赘婿应助彼岸采纳,获得10
22秒前
慕容雪兰发布了新的文献求助30
23秒前
花非花雾非雾完成签到,获得积分10
25秒前
111完成签到 ,获得积分10
25秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
orixero应助科研通管家采纳,获得10
28秒前
ぴいい完成签到,获得积分10
28秒前
Perry发布了新的文献求助10
30秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840592
求助须知:如何正确求助?哪些是违规求助? 3382626
关于积分的说明 10525423
捐赠科研通 3102331
什么是DOI,文献DOI怎么找? 1708767
邀请新用户注册赠送积分活动 822670
科研通“疑难数据库(出版商)”最低求助积分说明 773472